Sampling Geometric Inhomogeneous Random Graphs in Linear Time

نویسندگان

  • Karl Bringmann
  • Ralph Keusch
  • Johannes Lengler
چکیده

Real-world networks, like social networks or the internet infrastructure, have structural properties such as large clustering coefficients that can best be described in terms of an underlying geometry. This is why the focus of the literature on theoretical models for real-world networks shifted from classic models without geometry, such as Chung-Lu random graphs, to modern geometry-based models, such as hyperbolic random graphs. With this paper we contribute to the theoretical analysis of these modern, more realistic random graph models. Instead of studying directly hyperbolic random graphs, we introduce a generalization that we call geometric inhomogeneous random graphs (GIRGs). Since we ignore constant factors in the edge probabilities, GIRGs are technically simpler (specifically, we avoid hyperbolic cosines), while preserving the qualitative behaviour of hyperbolic random graphs, and we suggest to replace hyperbolic random graphs by this new model in future theoretical studies. We prove the following fundamental structural and algorithmic results on GIRGs. (1) As our main contribution we provide a sampling algorithm that generates a random graph from our model in expected linear time, improving the best-known sampling algorithm for hyperbolic random graphs by a substantial factor O( √ n). (2) We establish that GIRGs have clustering coefficients in Ω(1), (3) we prove that GIRGs have small separators, i.e., it suffices to delete a sublinear number of edges to break the giant component into two large pieces, and (4) we show how to compress GIRGs using an expected linear number of bits. 1998 ACM Subject Classification G.2.2 Graph Theory, F.2.2 Nonnumerical Algorithms and Problems

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric Inhomogeneous Random Graphs

For the theoretical study of real-world networks, we propose a model of scale-free randomgraphs with underlying geometry that we call geometric inhomogeneous random graphs (GIRGs).GIRGs generalize hyperbolic random graphs, which are a popular model to test algorithms forsocial and technological networks. Our generalization overcomes some limitations of hyperbolicrandom graphs, w...

متن کامل

Bootstrap Percolation on Geometric Inhomogeneous Random Graphs

Geometric inhomogeneous random graphs (GIRGs) are a model for scale-free networks with underlying geometry. We study bootstrap percolation on these graphs, which is a process modelling the spread of an infection of vertices starting within a (small) local region. We show that the process exhibits a phase transition in terms of the initial infection rate in this region. We determine the speed of...

متن کامل

Uniform random sampling of planar graphs in linear time

This article introduces new algorithms for the uniform random generation of labelled planar graphs. Its principles rely on Boltzmann samplers, as recently developed by Duchon, Flajolet, Louchard, and Schaeffer. It combines the Boltzmann framework, a suitable use of rejection, a new combinatorial bijection found by Fusy, Poulalhon and Schaeffer, as well as a precise analytic description of the g...

متن کامل

Finding induced subgraphs in scale-free inhomogeneous random graphs

We study the induced subgraph isomorphism problem on inhomogeneous random graphs with infinite variance power-law degrees. We provide a fast algorithm that determines for any connected graph H on k vertices if it exists as induced subgraph in a random graph with n vertices. By exploiting the scale-free graph structure, the algorithm runs in O(ne 4 ) time, and finds for constant k an instance of...

متن کامل

Exact and Efficient Generation of Geometric Random Variates and Random Graphs

The standard algorithm for fast generation of Erdős-Rényi random graphs only works in the Real RAM model. The critical point is the generation of geometric random variates Geo(p), for which there is no algorithm that is both exact and efficient in any bounded precision machine model. For a RAM model with word size w = Ω(log log(1/p)), we show that this is possible and present an exact algorithm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017