Differential and integral cross sections for the rotationally inelastic scattering of methyl radicals with H2 and D2.
نویسندگان
چکیده
Comparisons are presented of experimental and theoretical studies of the rotationally inelastic scattering of CD3 radicals with H2 and D2 collision partners at respective collision energies of 680 ± 75 and 640 ± 60 cm(-1). Close-coupling quantum-mechanical calculations performed using a newly constructed ab initio potential energy surface (PES) provide initial-to-final CD3 rotational level (n, k → n', k') integral and differential cross sections (ICSs and DCSs). The DCSs are compared with crossed molecular beam and velocity map imaging measurements of angular scattering distributions, which serve as a critical test of the accuracy of the new PES. In general, there is very good agreement between the experimental measurements and the calculations. The DCSs for CD3 scattering from both H2 and D2 peak in the forward hemisphere for n' = 2-4 and shift more to sideways and backward scattering for n' = 5. For n' = 6-8, the DCSs are dominated by backward scattering. DCSs for a particular CD3 n → n' transition have a similar angular dependence with either D2 or H2 as collision partner. Any differences between DCSs or ICSs can be attributed to mass effects because the PES is unchanged for CD3-H2 and CD3-D2 collisions. Further comparisons are drawn between the CD3-D2 scattering and results for CD3-He presented in our recent paper [O. Tkáč, A. G. Sage, S. J. Greaves, A. J. Orr-Ewing, P. J. Dagdigian, Q. Ma, and M. H. Alexander, Chem. Sci. 4, 4199 (2013)]. These systems have the same reduced mass, but are governed by different PESs.
منابع مشابه
Rotationally inelastic scattering of OH by molecular hydrogen: Theory and experiment.
We present an experimental and theoretical investigation of rotationally inelastic transitions of OH, prepared in the X(2)Π, v = 0, j = 3/2 F1f level, in collisions with molecular hydrogen (H2 and D2). In a crossed beam experiment, the OH radicals were state selected and velocity tuned over the collision energy range 75-155 cm(-1) using a Stark decelerator. Relative parity-resolved state-to-sta...
متن کاملProbing Scattering Resonances in (Ultra)Cold Inelastic NO-He Collisions.
We theoretically study inelastic collisions between NO radicals and He atoms at low collision energies, focusing on the occurrence of scattering resonances. We specifically investigate de-excitation of rotationally excited NO radicals (X (2)Π1/2, v = 0, j = 3/2, f) at collision energies ranging from 10(-3) to 20 cm(-1) and compute integral and differential cross sections using quantum mechanica...
متن کاملState-to-State Differential Cross Sections for Inelastic Collisions of NO Radicals with para-H2 and ortho-D2
We present state-to-state differential cross sections for collisions of NO molecules (X2Π1/2, j = 1/2f) with para-H2 and ortho-D2 molecules, at a collision energy of 510 and 450 cm-1, respectively. The angular scattering distributions for various final states of the NO radical are measured with high resolution using a crossed molecular beam apparatus that employs the combination of Stark decele...
متن کاملRotationally inelastic scattering of methyl radicals with Ar and N2.
The rotationally inelastic scattering of methyl radical with Ar and N2 is examined at collision energies of 330 ± 25 cm(-1) and 425 ± 50 cm(-1), respectively. Differential cross sections (DCSs) were measured for different final n' rotational levels (up to n' = 5) of the methyl radicals, averaged over k' sub-levels, using a crossed molecular beam machine with velocity map imaging. For Ar as a co...
متن کاملScattering of Stark-decelerated OH radicals with rare-gas atoms
We present a combined experimental and theoretical study on the rotationally inelastic scattering of OH (X 2Π3/2, J = 3/2, f) radicals with the collision partners He, Ne, Ar, Kr, Xe, and D2 as a function of the collision energy between ∼ 70 cm and 400 cm. The OH radicals are state selected and velocity tuned prior to the collision using a Stark decelerator, and field-free parity-resolved state-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 140 20 شماره
صفحات -
تاریخ انتشار 2014