Muscarinic M4 receptor recycling requires a motif in the third intracellular loop.
نویسندگان
چکیده
The present study was performed to identify sequence(s) in the third intracellular loop (i3) of the muscarinic acetylcholine receptor M4 subtype (M4 receptor) involved in its internalization and recycling. In transiently transfected human embryonic kidney 293-tsA201 cells, 40 to 50% of cell-surface M4 receptors are internalized in an agonist-dependent manner, and approximately 65% of internalized receptors are recycled back to the cell surface after removal of the agonist. We examined the internalization and recycling of M4 receptor mutants with partial deletion in i3 and found that various mutants (M4del-K(235)-K(240), M4del-T(241)-K(271), and M4del-W(339)-N(372)) showed internalization and cell-surface recycling in a similar manner to the M4 receptor. We also found that the mutant M4del-L(272)-R(338) was internalized to only half the extent of the M4 receptor and was recycled after agonist removal, and the mutant M4del-V(373)-A(393) was also internalized to half the extent of the wild type but was not recycled back to the cell surface after agonist removal. When the sequence corresponding to Val(373)-Ala(393) was grafted onto the i3 portion of a recycling-negative mutant of muscarinic M2 receptor with deletion of almost the whole of the i3 sequence, approximately 40% of the chimeric receptor on the cell surface was internalized, and more than 65% of the internalized receptors were recycled back to the cell surface. These results indicate that the regions including Leu(272)-Arg(338) and Val(373)-Ala(393) are involved in internalization of the M4 receptor, and the region including Val(373)-Ala(393) is indispensable for its recycling, whereas the other regions of i3 are dispensable for internalization and recycling.
منابع مشابه
Role of the third intracellular loop in the subtype-specific internalization and recycling of muscarinic M2 and M4 receptors.
Muscarinic M2, M4, and M2-M4 chimera receptors were transiently expressed in HEK-293 tsA201 cells, and agonist-dependent internalization of these receptors and recycling of internalized receptors were examined by measuring the amount of cell-surface receptors as [3H]N-methylscopolamine (NMS) binding activity. Coexpression of a dominant negative form of dynamin (DN-dynamin,dynamin K44A) greatly ...
متن کاملRab11a and myosin Vb regulate recycling of the M4 muscarinic acetylcholine receptor.
Agonist-induced internalization followed by subsequent return to the cell surface regulates G-protein-coupled receptor (GPCR) activity. Because the cellular responsiveness to ligand depends on the balance between receptor degradation and recycling, it is crucial to identify the molecules involved in GPCR recovery to the cell surface. In this study, we identify mechanisms involved in the recycli...
متن کاملNovel interaction between the M4 muscarinic acetylcholine receptor and elongation factor 1A2.
The activation of the muscarinic acetylcholine receptor (mAChR) family, consisting of five subtypes (M1-M5), produces a variety of physiological effects throughout the central nervous system. However, the role of each individual subtype remains poorly understood. To further elucidate signal transduction pathways for specific subtypes, we used the most divergent portion of the subtypes, the intr...
متن کاملUnraveling a molecular determinant for clathrin-independent internalization of the M2 muscarinic acetylcholine receptor
Endocytosis and postendocytic sorting of G-protein-coupled receptors (GPCRs) is important for the regulation of both their cell surface density and signaling profile. Unlike the mechanisms of clathrin-dependent endocytosis (CDE), the mechanisms underlying the control of GPCR signaling by clathrin-independent endocytosis (CIE) remain largely unknown. Among the muscarinic acetylcholine receptors ...
متن کاملHomologous mutations near the junction of the sixth transmembrane domain and the third extracellular loop lead to constitutive activity and enhanced agonist affinity at all muscarinic receptor subtypes.
Previous studies have found that a mutation near the junction of the sixth transmembrane domain (TM6) and the third extracellular loop of the M5 muscarinic receptor leads to constitutive activation and enhanced agonist affinity for the mutated receptor. These results were consistent with the extended ternary complex model, which predicts a correlation between agonist affinity and constitutive a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 325 3 شماره
صفحات -
تاریخ انتشار 2008