Graphene-based active slow surface plasmon polaritons

نویسندگان

  • Hua Lu
  • Chao Zeng
  • Qiming Zhang
  • Xueming Liu
  • Md Muntasir Hossain
  • Philipp Reineck
  • Min Gu
چکیده

Finding new ways to control and slow down the group velocity of light in media remains a major challenge in the field of optics. For the design of plasmonic slow light structures, graphene represents an attractive alternative to metals due to its strong field confinement, comparably low ohmic loss and versatile tunability. Here we propose a novel nanostructure consisting of a monolayer graphene on a silicon based graded grating structure. An external gate voltage is applied to graphene and silicon, which are separated by a spacer layer of silica. Theoretical and numerical results demonstrate that the structure exhibits an ultra-high slowdown factor above 450 for the propagation of surface plasmon polaritons (SPPs) excited in graphene, which also enables the spatially resolved trapping of light. Slowdown and trapping occur in the mid-infrared wavelength region within a bandwidth of ~2.1 μm and on a length scale less than 1/6 of the operating wavelength. The slowdown factor can be precisely tuned simply by adjusting the external gate voltage, offering a dynamic pathway for the release of trapped SPPs at room temperature. The presented results will enable the development of highly tunable optoelectronic devices such as plasmonic switches and buffers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scattering of terahertz radiation on a graphene-based nano-antenna

Scattering of the terahertz radiation on a graphene-based nano-antenna is considered. Different electromagnetic models of graphene are discussed and applied to calculate extinction, scattering and absorption cross sections of the nanoantenna. Scattering resonances in the terahertz band are identified as longitudinal Fabry-Perot resonances of surface plasmon polaritons supported by the graphene ...

متن کامل

Excitation and active control of propagating surface plasmon polaritons in graphene.

We demonstrate the excitation and gate control of highly confined surface plasmon polaritons propagating through monolayer graphene using a silicon diffractive grating. The normal-incidence infrared transmission spectra exhibit pronounced dips due to guided-wave resonances, whose frequencies can be tuned over a range of ~80 cm(-1) by applying a gate voltage. This novel structure provides a way ...

متن کامل

Planar hyperlens based on a modulated graphene monolayer

The canalization of terahertz surface plasmon polaritons using a modulated graphene monolayer is investigated for subwavelength imaging. An anisotropic surface conductivity formed by a set of parallel nanoribbons with alternating positive and negative imaginary conductivities is used to realize the canalization regime required for hyperlensing. The ribbons are narrow compared to the wavelength ...

متن کامل

Mid-infrared polaritonic coupling between boron nitride nanotubes and graphene.

Boron nitride (BN) is considered to be a promising substrate for graphene-based devices in part because its large band gap can serve to insulate graphene in layered heterostructures. At mid-infrared frequencies, graphene supports surface plasmon polaritons (SPPs), whereas hexagonal-BN (h-BN) is found to support surface phonon polaritons (SPhPs). We report on the observation of infrared polarito...

متن کامل

Graphene-Hexagonal Boron Nitride Heterostructure as a Tunable Phonon–Plasmon Coupling System

The layered van der Waals (vdW) heterostructure, assembled from monolayer graphene, hexagonal boron nitride (h-BN) and other atomic crystals in various combinations, is emerging as a new paradigm with which to attain desired electronic and optical properties. In this paper, we study theoretically the mid-infrared optical properties of the vdW heterostructure based on the graphene–h-BN system. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015