Model synthesis of nonlinear nonstationary dynamical systems in concentrating production using Volterra kernel transformation
نویسندگان
چکیده
The features of the application of mathematical modeling of nonlinear dynamic systems such as “input-output”, which operate under the conditions of concentrating production, on the basis of finite sums of Volterra integral power series are considered.
منابع مشابه
Solving Second Kind Volterra-Fredholm Integral Equations by Using Triangular Functions (TF) and Dynamical Systems
The method of triangular functions (TF) could be a generalization form of the functions of block-pulse (Bp). The solution of second kind integral equations by using the concept of TF would lead to a nonlinear equations system. In this article, the obtained nonlinear system has been solved as a dynamical system. The solution of the obtained nonlinear system by the dynamical system throug...
متن کاملThe solving linear one-dimemsional Volterra integral equations of the second kind in reproducing kernel space
In this paper, to solve a linear one-dimensional Volterra integral equation of the second kind. For this purpose using the equation form, we have defined a linear transformation and by using it's conjugate and reproducing kernel functions, we obtain a basis for the functions space.Then we obtain the solution of integral equation in terms of the basis functions. The examples presented in this ...
متن کاملA New Solution to Volterra Series Estimation
Volterra series expansions represent an important model for the representation, analysis and synthesis of nonlinear dynamical systems. However, a significant problem with this approach to system identification is that the number of terms required to be estimated grows exponentially with the order of the expansion. In practice, therefore, the Volterra series is typically truncated to consist of,...
متن کاملA Kernel Method for Non-linear Systems Identification – Infinite Degree Volterra Series Estimation
Volterra series expansions are widely used in analyzing and solving the problems of non-linear dynamical systems. However, the problem that the number of terms to be determined increases exponentially with the order of the expansion restricts its practical application. In practice, Volterra series expansions are truncated severely so that they may not give accurate representations of the origin...
متن کاملThe combined reproducing kernel method and Taylor series for solving nonlinear Volterra-Fredholm integro-differential equations
In this letter, the numerical scheme of nonlinear Volterra-Fredholm integro-differential equations is proposed in a reproducing kernel Hilbert space (RKHS). The method is constructed based on the reproducing kernel properties in which the initial condition of the problem is satised. The nonlinear terms are replaced by its Taylor series. In this technique, the nonlinear Volterra-Fredholm integro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015