Mixed Compressed Sensing Based on Random Graphs

نویسندگان

  • Yi-Zheng Fan
  • Tao Huang
  • Ming Zhu
چکیده

Finding a suitable measurement matrix is an important topic in compressed sensing. Though the known random matrix, whose entries are drawn independently from a certain probability distribution, can be used as a measurement matrix and recover signal well, in most cases, we hope the measurement matrix imposed with some special structure. In this paper, based on random graph models, we show that the mixed symmetric random matrices, whose diagonal entries obey a distribution and non-diagonal entries obey another distribution, can be used to recover signal successfully with high probability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Block-Wise random sampling approach: Compressed sensing problem

The focus of this paper is to consider the compressed sensing problem. It is stated that the compressed sensing theory, under certain conditions, helps relax the Nyquist sampling theory and takes smaller samples. One of the important tasks in this theory is to carefully design measurement matrix (sampling operator). Most existing methods in the literature attempt to optimize a randomly initiali...

متن کامل

Accelerating Magnetic Resonance Imaging through Compressed Sensing Theory in the Direction space-k

Magnetic Resonance Imaging (MRI) is a noninvasive imaging method widely used in medical diagnosis. Data in MRI are obtained line-by-line within the K-space, where there are usually a great number of such lines. For this reason, magnetic resonance imaging is slow. MRI can be accelerated through several methods such as parallel imaging and compressed sensing, where a fraction of the K-space lines...

متن کامل

Frames for compressed sensing using coherence

We give some new results on sparse signal recovery in the presence of noise, for weighted spaces. Traditionally, were used dictionaries that have the norm equal to 1, but, for random dictionaries this condition is rarely satised. Moreover, we give better estimations then the ones given recently by Cai, Wang and Xu.

متن کامل

On construction and analysis of sparse random matrices and expander graphs with applications to compressed sensing

We revisit the probabilistic construction of sparse random matrices where each column has a fixed number of nonzeros whose row indices are drawn uniformly at random. These matrices have a one-to-one correspondence with the adjacency matrices of lossless expander graphs. We present tail bounds on the probability that the cardinality of the set of neighbors for these graphs will be less than the ...

متن کامل

Construction and analysis of sparse random matrices and expander graphs with applications to compressed sensing

We consider a probabilistic construction of sparse random matrices where each column has a fixed number of nonzeros whose row indices are drawn uniformly at random. These matrices have a one-to-one correspondence with the adjacency matrices of lossless expander graphs. We present tail bounds on the probability that the cardinality of the set of neighbors for these graphs will be less than the e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1307.2117  شماره 

صفحات  -

تاریخ انتشار 2013