Simulation and Optimization of SiC Field Effect Transistors
نویسندگان
چکیده
Silicon Carbide (SiC) is a wide band-gap semiconductor material with excellent material properties for high frequency, high power and high temperature electronics. In this work different SiC field-effect transistors have been studied using theoretical methods, with the focus on both the devices and the methods used. The rapid miniaturization of commercial devices demands better physical models than the drift-diffusion and hydrodynamic models most commonly used at present. The Monte Carlo method is the most accurate physical methods available and has been used in this work to study the performance in short-channel SiC field-effect devices. The drawback of the Monte-Carlo method is the computational power required and it is thus not well suited for device design where the layout requires to be optimized for best device performance. One approach to reduce the simulation time in the Monte Carlo method is to use a time-domain drift-diffusion model in contact and bulk regions of the device. In this work, a time-domain drift-diffusion model is implemented and verified against commercial tools and would be suitable for inclusion in the Monte-Carlo device simulator framework. Device optimization is traditionally performed by hand, changing device parameters until sufficient performance is achieved. This is very time consuming work without any guarantee of achieving an optimal layout. In this work a tool is developed, which automatically changes device layout until optimal device performance is achieved. Device optimization requires hundreds of device simulations and thus it is essential that computationally efficient methods are used. One important physical process for RF power devices is self heating. Self heating can be fairly accurately modelled in two dimensions but this will greatly reduce the computational speed. For realistic influence self heating must be studied in three dimensions and a method is developed using a combination of 2D electrical and 3D thermal simulations. The accuracy is much improved by using the proposed method in comparison to a 2D coupled electro/thermal simulation and at the same time offers greater efficiency. Linearity is another very important issue for RF power devices for telecommunication applications. A method to predict the linearity is implemented using nonlinear circuit simulation of the active device and neighbouring passive elements. The work has contributed to a substantial improvement in the area of device simulation and increased efficiency in device design in general, but particularly for SiC RF power MESFETs.
منابع مشابه
Electrothermal simulation of the self-heating effects in GaN-based field-effect transistors
We report results of the analytical and numerical investigation of self-heating effects in GaN-based high-power field-effect transistors. The problem of heat transfer in a transistor structure has been solved both analytically, using the method of images, and numerically. Two-dimensional electrothermal simulations of the GaN metal-semiconductor field-effect transistors on SiC and sapphire subst...
متن کاملModeling of Manufacturing of Field-Effect Heterotransistors without P-n-junctions to Optimize Decreasing their Dimensions
It has been recently shown that manufacturing p-n-junctions, field-effect and bipolar transistors, thyristors in a multilayer structure by diffusion or ion implantation with the optimization of dopant and/or radiation defects leads to increase the sharpness of p-n-junctions (both single p-n-junctions and p-n-junctions framework their system). Due to the optimization, one can also obtain increas...
متن کاملSimulation of Self-Heating and Temperature Effect in GaN-based Metal-Semiconductor Field-Effect Transistor
Two-dimensional electro-thermal simulations of GaN-based metal-semiconductor fieldeffect transistor are performed in the framework of the drift-diffusion model. The dependence of the hot spot temperature in transistors with many gates on the gate-to-gate pitch is studied. The case of SiC substrate is compared to the case of sapphire substrate. The ambient temperature effect on transistor perfor...
متن کاملDesign and Optimization of Input-Output Block using Graphene Nano-ribbon Transistors
In the electronics industry, scaling and optimization is final goal. But, according to ITRS predictions, silicon as basic material for semiconductors, is facing physical limitation and approaching the end of the path. Therefore, researchers are looking for the silicon replacement. Until now, carbon and its allotrope, graphene, look to be viable candidates. Among different circuits, IO block is ...
متن کاملSymmetrical, Low-Power, and High-Speed 1-Bit Full Adder Cells Using 32nm Carbon Nanotube Field-effect Transistors Technology (TECHNICAL NOTE)
Carbon nanotube field-effect transistors (CNFETs) are a promising candidate to replace conventional metal oxide field-effect transistors (MOSFETs) in the time to come. They have considerable characteristics such as low power consumption and high switching speed. Full adder cell is the main part of the most digital systems as it is building block of subtracter, multiplier, compressor, and other ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004