Semantic Enhancement Engine
نویسندگان
چکیده
Traditionally, automatic classification and metadata extraction have been performed in isolation, usually on unformatted text. SCORE Enhancement Engine (SEE) is a component of a Semantic Web technology called the Semantic Content Organization and Retrieval Engine (SCORE). SEE takes the next natural steps by supporting heterogeneous content (not only unformatted text), as well as following up automatic classification with extraction of contextually relevant, domain-specific (i.e., semantic) metadata. Extraction of semantic metadata not only includes identification of relevant entities but also relationships within the context of relevant ontology. This paper describes SEE's architecture, which provides a common API for heterogeneous document processing, with discrete, reusable and highly configurable modular components. This results in exceptional flexibility, extensibility and performance. Referred to as SEE modules (SEEMs), which are divided along functional lines, these processors perform one of the following roles: restriction (determine the segments of the input text to operate upon); enhancement (discover textual features of semantic interest); filtering (augment, remove or supplement the features recognized); or outputting (generate reports, annotate the original, update databases, or other actions). Each SEEM manages its configuration options and is arranged serially in virtual pipelines to perform designated semantic tasks. These configurations can be saved and reloaded on a per-document basis. This allows a single SEE installation to act logically as any number of Semantic Applications, and to compose these Semantic Applications as needed to perform even more complex semantic tasks. SEE leverages SCORE's unique approach of creating and using large knowledge base in semantic processing. It enables SCORE to provide flexible handling of highly heterogeneous content (including raw text, HTML, XML and documents of various formats); reliable automatic classification of documents; accurate extraction of semantic, domain-specific metadata; and extensive management of the enhancement processes including various reporting and semantic annotation mechanisms. This results in SCORE's advanced capability in heterogeneous content integration at a higher semantic level, rather than syntactical and structural level approaches based on XML and RDF, by supporting and exploiting domain specific ontologies.
منابع مشابه
Semantic Enhancement Engine: A Modular Document Enhancement Platform for Semantic Applications over Heterogeneous Content
Traditionally, automatic classification and metadata extraction have been performed in isolation, usually on unformatted text. SCORE Enhancement Engine (SEE) is a component of a Semantic Web technology called the Semantic Content Organization and Retrieval Engine (SCORE). SEE takes the next natural steps by supporting heterogeneous content (not only unformatted text), as well as following up au...
متن کاملWeb Page Re-ranking Technique in Search Engine
Web-page re-ranking plays an important role in Web systems. Satisfactory and Useful knowledge discovery from Web usage data representation for effective Webpage recommendations are challenging and crucial. This paper proposes a novel method to efficiently provide better Web-page recommendation through semantic-enhancement by integrating the Web usage knowledge and domain. A number of effective ...
متن کاملVHR Semantic Labeling by Random Forest Classification and Fusion of Spectral and Spatial Features on Google Earth Engine
Semantic labeling is an active field in remote sensing applications. Although handling high detailed objects in Very High Resolution (VHR) optical image and VHR Digital Surface Model (DSM) is a challenging task, it can improve the accuracy of semantic labeling methods. In this paper, a semantic labeling method is proposed by fusion of optical and normalized DSM data. Spectral and spatial featur...
متن کاملEnhancement of a subjective word lexicon by semantic tests
Recent considerations in opinion mining, oriented by real applicative tasks, require creating lexical and semantic resources quantitatively and qualitatively rich. In this context, we present a method to automatically enhance a lexicon of subjective terms. The method relies on the indexing of Web documents by a search engine and large number of requests automatically sent. The construction of t...
متن کاملOptimizing title and Meta tags based on distribution of keywords; Lexical and semantic approaches
Problem statement: To increase traffic on websites, Search Engine Optimization (SEO) has provided many costly and time-consuming options. One problem is the inadequate distribution of keywords especially those keywords that users use the title tag and Meta tags. Approach: This study described work on an initial model for handling some of the SEO factors to increase the distribution of keywords....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002