A new group of glycoside hydrolase family 13 α-amylases with an aberrant catalytic triad

نویسندگان

  • Fean D. Sarian
  • Štefan Janeček
  • Tjaard Pijning
  • Ihsanawati
  • Zeily Nurachman
  • Ocky K. Radjasa
  • Lubbert Dijkhuizen
  • Dessy Natalia
  • Marc J. E. C. van der Maarel
چکیده

α-Amylases are glycoside hydrolase enzymes that act on the α(1→4) glycosidic linkages in glycogen, starch, and related α-glucans, and are ubiquitously present in Nature. Most α-amylases have been classified in glycoside hydrolase family 13 with a typical (β/α)8-barrel containing two aspartic acid and one glutamic acid residue that play an essential role in catalysis. An atypical α-amylase (BmaN1) with only two of the three invariant catalytic residues present was isolated from Bacillus megaterium strain NL3, a bacterial isolate from a sea anemone of Kakaban landlocked marine lake, Derawan Island, Indonesia. In BmaN1 the third residue, the aspartic acid that acts as the transition state stabilizer, was replaced by a histidine. Three-dimensional structure modeling of the BmaN1 amino acid sequence confirmed the aberrant catalytic triad. Glucose and maltose were found as products of the action of the novel α-amylase on soluble starch, demonstrating that it is active in spite of the peculiar catalytic triad. This novel BmaN1 α-amylase is part of a group of α-amylases that all have this atypical catalytic triad, consisting of aspartic acid, glutamic acid and histidine. Phylogenetic analysis showed that this group of α-amylases comprises a new subfamily of the glycoside hydrolase family 13.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Amylolytic Enzymes - Focus on the Alpha-amylases from Archaea and Plants

Amylolytic enzymes represent a group of starch hydrolases and related enzymes that are active towards the α-glycosidic bonds in starch and related polyand oligosaccharides. The three best known amylolytic enzymes are α-amylase, β-amylase and glucoamylase that, however, differ from each other by their amino acid sequences, three-dimensional structures, reaction mechanisms and catalytic machineri...

متن کامل

Amylolytic families of glycoside hydrolases: focus on the family GH-57

The amylolytic and related enzymes have been classified into the families of glycoside hydrolases (GHs). At present there are almost one hundred GH families. The main α-amylase family is the family GH-13 that forms the clan GH-H together with the families GH-70 and GH-77. β-Amylases and glucoamylases have their own families GH-14 and GH15, respectively. Some amylolytic enzymes are grouped also ...

متن کامل

Crystal structure of a raw-starch-degrading bacterial α-amylase belonging to subfamily 37 of the glycoside hydrolase family GH13

Subfamily 37 of the glycoside hydrolase family GH13 was recently established on the basis of the discovery of a novel α-amylase, designated AmyP, from a marine metagenomic library. AmyP exhibits raw-starch-degrading activity and consists of an N-terminal catalytic domain and a C-terminal starch-binding domain. To understand this newest subfamily, we determined the crystal structure of the catal...

متن کامل

The unique glycoside hydrolase family 77 amylomaltase from Borrelia burgdorferi with only catalytic triad conserved.

Glycoside hydrolase family 77 (GH77) contains prokaryotic amylomaltases and plant-disproportionating enzymes (both possessing the 4-alpha-glucanotransferase activity; EC 2.4.1.25). Together with GH13 and GH70, it forms the clan GH-H, known as the alpha-amylase family. Bioinformatics analysis revealed that the putative GH77 amylomaltase (MalQ) from the Lyme disease spirochaete Borrelia burgdorfe...

متن کامل

Identification of the sequence motif of glycoside hydrolase 13 family members

A bioinformatics analysis of sequences of enzymes of the glycoside hydrolase (GH) 13 family members such as α-amylase, cyclodextrin glycosyltransferase (CGTase), branching enzyme and cyclomaltodextrinase has been carried out in order to find out the sequence motifs that govern the reactions specificities of these enzymes by using hidden Markov model (HMM) profile. This analysis suggests the exi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017