Locally adaptive function estimation for binary regression models.
نویسندگان
چکیده
In this paper we present a nonparametric Bayesian approach for fitting unsmooth or highly oscillating functions in regression models with binary responses. The approach extends previous work by Lang et al. for Gaussian responses. Nonlinear functions are modelled by first or second order random walk priors with locally varying variances or smoothing parameters. Estimation is fully Bayesian and uses latent utility representations of binary regression models for efficient block sampling from the full conditionals of nonlinear functions.
منابع مشابه
The Analysis of Bayesian Probit Regression of Binary and Polychotomous Response Data
The goal of this study is to introduce a statistical method regarding the analysis of specific latent data for regression analysis of the discrete data and to build a relation between a probit regression model (related to the discrete response) and normal linear regression model (related to the latent data of continuous response). This method provides precise inferences on binary and multinomia...
متن کاملEstimation of coal proximate analysis factors and calorific value by multivariable regression method and adaptive neuro-fuzzy inference system (ANFIS)
The proximate analysis is the most common form of coal evaluation and it reveals the quality of a coal sample. It examines four factors including the moisture, ash, volatile matter (VM), and fixed carbon (FC) within the coal sample. Every factor is determined through a distinct experimental procedure under ASTM specified conditions. These determinations are time consuming and require a signific...
متن کاملSensorless Speed Control of Switched Reluctance Motor Drive Using the Binary Observer with Online Flux-Linkage Estimation
An adaptive online flux-linkage estimation method for the sensorless control of switched reluctance motor (SRM) drive is presented in this paper. Sensorless operation is achieved through a binary observer based algorithm. In order to avoid using the look up tables of motor characteristics, which makes the system, depends on motor parameters, an adaptive identification algorithm is used to estim...
متن کامل2-D binary locally monotonic regression
We introduce binary locally monotonic regression as a first step in the study of the application of local monotonicity for image estimation. Given an algorithm that generates a similar locally monotonic image from a given image, we can specify both the scale of the image features retained and the image smoothness. In contrast to the median filter and to morphological filters, a locally monotoni...
متن کاملStator Fault Detection in Induction Machines by Parameter Estimation Using Adaptive Kalman Filter
This paper presents a parametric low differential order model, suitable for mathematically analysis for Induction Machines with faulty stator. An adaptive Kalman filter is proposed for recursively estimating the states and parameters of continuous–time model with discrete measurements for fault detection ends. Typical motor faults as interturn short circuit and increased winding resistance ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biometrical journal. Biometrische Zeitschrift
دوره 47 2 شماره
صفحات -
تاریخ انتشار 2005