Role of the mitochondrial ATP synthase central stalk subunits γ and δ in the activity and assembly of the mammalian enzyme.

نویسندگان

  • Petr Pecina
  • Hana Nůsková
  • Vendula Karbanová
  • Vilma Kaplanová
  • Tomáš Mráček
  • Josef Houštěk
چکیده

The central stalk of mitochondrial ATP synthase consists of subunits γ, δ, and ε, and along with the membraneous subunit c oligomer constitutes the rotor domain of the enzyme. Our previous studies showed that mutation or deficiency of ε subunit markedly decreased the content of ATP synthase, which was otherwise functionaly and structuraly normal. Interestingly, it led to accumulation of subunit c aggregates, suggesting the role of the ε subunit in assembly of individual enzyme domains. In the present study we focused on the role of subunits γ and δ. Using shRNA knockdown in human HEK293 cells, the protein levels of γ and δ were decreased to 30% and 10% of control levels, respectively. The content of the assembled ATP synthase decreased in accordance with the levels of the silenced subunits, which was also the case for most structural subunits. In contrast, the hydrophobic c subunit was increased to 130% or 180%, respectively and most of it was detected as aggregates of 150-400 kDa by 2D PAGE. In addition the IF1 protein was upregulated to 195% and 300% of control levels. Both γ and δ subunits silenced cells displayed decreased ATP synthase function - lowered rate of ADP-stimulated respiration, a two-fold increased sensitivity of respiration to inhibitor oligomycin, and impaired utilization of mitochondrial membrane potential for ADP phosphorylation. In summary, similar phenotype of γ, δ and ε subunit deficiencies suggest uniform requirement for assembled central stalk as driver of the c-oligomer attachment in the assembly process of mammalian ATP synthase.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The depletion of F1 subunit ε in yeast leads to an uncoupled respiratory phenotype that is rescued by mutations in the proton-translocating subunits of F0

The central stalk of the ATP synthase is an elongated hetero-oligomeric structure providing a physical connection between the catalytic sites in F₁ and the proton translocation channel in F₀ for energy transduction between the two subdomains. The shape of the central stalk and relevance to energy coupling are essentially the same in ATP synthases from all forms of life, yet the protein composit...

متن کامل

Adenosine 5′-triphosphate (ATP) synthesis by oxidative phosphorylation or photophosphorylation

phosphorylation or photophosphorylation is a multi-step, membrane-located process that provides the bulk of cellular energy in eukaryotes and many prokaryotes. Most of the ATP synthesis in these cells is catalyzed by the enzyme, F1Fo-ATP synthase, also called F1Fo-ATPase (F-ATPase), which in its simplest, bacterial, form is composed of eight subunits (α3:β3:γ:δ:ε:a:b2:c9–12). The archaeal A1Ao-...

متن کامل

Stalking the mitochondrial ATP synthase: Ina found guilty by association.

M itochondrial oxidative phosphorylation produces the vast bulk of ATP in aerobic cells. The F1FoATPase (or mitochondrial ATP synthase; complex V) is a large multisubunit machine of the mitochondrial inner membrane (Fig 1). ATP is produced by the F1Fo-ATPase by utilizing the proton gradient formed by the electron transport chain. It is comprised of two major structural regions—an F1ATPase matri...

متن کامل

O-9: The Central Role of Mitochondrial Function in Quality of Human Oocyte

Background: Mitochondria are the most aboudent and small essential organelles found in eukaryotic cells. These are semiautonomous organelles for the production of cellular ATP that through its various biochemical pathways. The primary pathway for ATP production is OXPHOS via the electron transfer chain (ETC) which is encoded by nuclear DNA and mtdna genomes. Mitochondria consist of double stran...

متن کامل

GABAA Receptor Subunits in Rat Testis and Sperm

Background γ-Aminobutyric acid (GABA) is considered to be the predominant inhibitory neurotransmitter in mammalian central nervous systems (CNS). There are two major classes of GABA receptors: GABAARs and GABABRs. The GABAA receptor is derived from various subunits such as alpha1-alpha 6, beta1-beta 3, gamma1-gamma 4, delta, epsilon, pi, and rho1-3. Intensive research has been performed to und...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochimica et biophysica acta

دوره 1859 5  شماره 

صفحات  -

تاریخ انتشار 2018