Lower and Upper Bounds on Obtaining History Independence
نویسندگان
چکیده
History independent data structures, presented by Micciancio, are data structures that possess a strong security property: even if an intruder manages to get a copy of the data structure, the memory layout of the structure yields no additional information on the history of operations applied on the structure beyond the information obtainable from the content itself. Naor and Teague proposed a stronger notion of history independence in which the intruder may break into the system several times without being noticed and still obtain no additional information from reading the memory layout of the data structure. An open question posed by Naor and Teague is whether these two notions are equally hard to obtain. In this paper we provide a separation between the two requirements for comparison-based algorithms. We show very strong lower bounds for obtaining the stronger notion of history independence for a large class of data structures, including, for example, the heap and the queue abstract data structures. We also provide complementary upper bounds showing that the heap abstract data structure may be made weakly history independent in the comparison based model without incurring any additional (asymptotic) cost on any of its operations. (A similar result is easy for the queue.) Thus, we obtain the first separation between the two notions of history independence. The gap we obtain is exponential: some operations may be executed in logarithmic time (or even in constant time) with the weaker definition, but require linear time with the stronger definition.
منابع مشابه
Lower and Upper Bounds on Obtaining
History independent data structures, presented by Miccian-cio, are data structures that possess a strong security property: even if an intruder manages to get a copy of the data structure, the memory layout of the structure yields no additional information on the data structure beyond its content. In particular, the history of operations applied on the structure is not visible in its memory lay...
متن کاملOn the Impossibility of Amplifying the Independence of Random Variables
In this paper we prove improved lower and upper bounds on the size of sample spaces which are required to be independent on speciied neighborhoods. Our new constructions yield sample spaces whose size is smaller than previous constructions due to Schulmann8]. Our lower bounds generalize the known lower bounds of 1, 3, 2]. In obtaining these bounds we examine the possibilities and limitations of...
متن کاملGeneralizations of Heilbronn's Triangle Problem
For integers d, j ≥ 2 and n ≥ j, distributions of n points in the d-dimensional unit cube [0, 1]d are investigated, such that the minimum volume of the convex hull determined by j of n points is large. Lower and upper bounds on these minimum volumes are given. For obtaining lower bounds, results on the independence number of non-uniform, linear hypergraphs are used, which might be of interest b...
متن کاملUpper and lower bounds of symmetric division deg index
Symmetric Division Deg index is one of the 148 discrete Adriatic indices that showed good predictive properties on the testing sets provided by International Academy of Mathematical Chemistry. Symmetric Division Deg index is defined by $$ SDD(G) = sumE left( frac{min{d_u,d_v}}{max{d_u,d_v}} + frac{max{d_u,d_v}}{min{d_u,d_v}} right), $$ where $d_i$ is the degree of vertex $i$ in graph $G$. In th...
متن کاملEstimating Upper and Lower Bounds For Industry Efficiency With Unknown Technology
With a brief review of the studies on the industry in Data Envelopment Analysis (DEA) framework, the present paper proposes inner and outer technologies when only some basic information is available about the technology. Furthermore, applying Linear Programming techniques, it also determines lower and upper bounds for directional distance function (DDF) measure, overall and allocative efficienc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003