Thin-fiber mechanoreceptors reflexly increase renal sympathetic nerve activity during static contraction.
نویسندگان
چکیده
The renal vasoconstriction induced by the sympathetic outflow during exercise serves to direct blood flow from the kidney toward the exercising muscles. The renal circulation seems to be particularly important in this regard, because it receives a substantial part of the cardiac output, which in resting humans has been estimated to be 20%. The role of group III mechanoreceptors in causing the reflex renal sympathetic response to static contraction remains an open question. To shed some light on this question, we recorded the renal sympathetic nerve responses to static contraction before and after injection of gadolinium into the arterial supply of the statically contracting triceps surae muscles of decerebrate unanesthetized and chloralose-anesthetized cats. Gadolinium has been shown to be a selective blocker of mechanogated channels in thin-fiber muscle afferents, which comprise the afferent arm of the exercise pressor reflex arc. In decerebrate (n = 15) and chloralose-anesthetized (n = 12) cats, we found that gadolinium (10 mM; 1 ml) significantly attenuated the renal sympathetic nerve and pressor responses to static contraction (60 s) after a latent period of 60 min; both responses recovered after a latent period of 120 min. We conclude that thin-fiber mechanoreceptors supplying contracting muscle are involved in some of the renal vasoconstriction evoked by the exercise pressor reflex.
منابع مشابه
Stimulation of renal sympathetic activity by static contraction: evidence for mechanoreceptor-induced reflexes from skeletal muscle.
Static muscular contraction in anesthetized animals has been firmly established to reflexly increase arterial pressure. Although group III and IV muscle afferents are known to be responsible for this reflex pressor response, there is no evidence that the stimulation of muscle mechanoreceptors, many of which are supplied by group III fibers, plays a role in causing this contraction-induced refle...
متن کاملBlockade of purinergic 2 receptors attenuates the mechanoreceptor component of the exercise pressor reflex.
The finding that pyridoxalphosphate-6-azophenyl-2,4-disulfonic acid (PPADS), a P2 antagonist, attenuated the pressor response to calcaneal tendon stretch, a purely mechanical stimulus, raises the possibility that P2 receptors sensitize mechanoreceptors to static contraction of the triceps surae muscles. The mechanical component of the exercise pressor reflex, which is evoked by static contracti...
متن کاملMechanoreceptors and central command.
STATIC EXERCISE INCREASES mean arterial pressure, heart rate, and ventilation. Central command and the exercise pressor reflex are the two neural mechanisms causing these responses to static exercise. Central command is defined as the parallel activation of the locomotor and autonomic circuits in the central nervous system that simultaneously increase motor activity as well as arterial pressure...
متن کاملMLR stimulation and exercise pressor reflex activate different renal sympathetic fibers in decerebrate cats.
Although mesencephalic locomotor region (MLR) stimulation and the exercise pressor reflex have been shown to increase whole nerve renal sympathetic activity, it is not known whether these mechanisms converge onto the same population of renal sympathetic postganglionic efferents. In decerebrate cats, we examined the responses of single renal sympathetic postganglionic efferents to stimulation of...
متن کاملControl of skin sympathetic nerve activity during intermittent static handgrip exercise.
BACKGROUND Exercise activates the sympathetic nervous system as a function of the type and intensity of exercise and of the target organ studied. Although central command and activity of metabolically sensitive afferents from exercising muscle are the principal determinants of sympathetic outflow directed to skeletal muscle, the mechanisms that govern sympathetic outflow directed to skin are le...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 292 2 شماره
صفحات -
تاریخ انتشار 2007