High-Performance Pseudo-Random Number Generation on Graphics Processing Units

نویسندگان

  • Nimalan Nandapalan
  • Richard P. Brent
  • Lawrence M. Murray
  • Alistair P. Rendell
چکیده

This work considers the deployment of pseudo-random number generators (PRNGs) on graphics processing units (GPUs), developing an approach based on the xorgens generator to rapidly produce pseudo-random numbers of high statistical quality. The chosen algorithm has configurable state size and period, making it ideal for tuning to the GPU architecture. We present a comparison of both speed and statistical quality with other common parallel, GPU-based PRNGs, demonstrating favourable performance of the xorgens-based approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pseudo-random number generators for Monte Carlo simulations on ATI Graphics Processing Units

Basic uniform pseudo-random number generators are implemented on ATI Graphics Processing Units (GPU). The performance results of the realized generators (multiplicative linear congruential (GGL), XOR-shift (XOR128), RANECU, RANMAR, RANLUX and Mersenne Twister (MT19937)) on CPU and GPU are discussed. The obtained speed-up factor is hundreds of times in comparison with CPU. RANLUX generator is fo...

متن کامل

Using graphics processing units to generate random numbers

The future of high-performance computing is aligning itself towards the efficient use of highly parallel computing environments. One application where the use of massive parallelism comes instinctively is Monte Carlo simulations, where a large number of independent events have to be simulated. At the core of the Monte Carlo simulation lies the Random Number Generator (RNG). In this paper, the m...

متن کامل

Implementation of Parallel Genetic Algorithms on Graphics Processing Units

In this paper, we propose to parallelize a Hybrid Genetic Algorithm (HGA) on Graphics Processing Units (GPUs) which are available and installed on ubiquitous personal computers. HGA extends the classical genetic algorithm by incorporating the Cauchy mutation operator from evolutionary programming. In our parallel HGA, all steps except the random number generation procedure are performed in GPU ...

متن کامل

Performance and Quality of Random Number Generators

Random number generation continues to be a critical component in much of computational science and the tradeoff between quality and computational performance is a key issue for many numerical simulations. We review the performance and statistical quality of some well known algorithms for generating pseudo random numbers. Graphical Processing Units (GPUs) are a powerful platform for accelerating...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011