Object Detection Free Instance Segmentation With Labeling Transformations

نویسندگان

  • Long Jin
  • Zeyu Chen
  • Zhuowen Tu
چکیده

Instance segmentation has attracted recent attention in computer vision and existing methods in this domain mostly have an object detection stage. In this paper, we study the intrinsic challenge of the instance segmentation problem, the presence of a quotient space (swapping the labels of different instances leads to the same result), and propose new methods that are object proposaland object detectionfree. We propose three methods, namely pixel-based affinity mapping, superpixel-based affinity learning, and boundarybased component segmentation, all focusing on performing labeling transformations to cope with the quotient space problem. By adopting fully convolutional neural networks (FCN) like models, our framework attains competitive results on both the PASCAL dataset (object-centric) and the Gland dataset (texture-centric), which the existing methods are not able to do. Our work also has the advantages in its transparency, simplicity, and being all segmentation based.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning to Cluster for Proposal-Free Instance Segmentation

This work proposed a novel learning objective to train a deep neural network to perform end-to-end image pixel clustering. We applied the approach to instance segmentation, which is at the intersection of image semantic segmentation and object detection. We utilize the most fundamental property of instance labeling – the pairwise relationship between pixels – as the supervision to formulate the...

متن کامل

Object-Based Classification of UltraCamD Imagery for Identification of Tree Species in the Mixed Planted Forest

This study is a contribution to assess the high resolution digital aerial imagery for semi-automatic analysis of tree species identification. To maximize the benefit of such data, the object-based classification was conducted in a mixed forest plantation. Two subsets of an UltraCam D image were geometrically corrected using aero-triangulation method. Some appropriate transformations were perfor...

متن کامل

Hough Regions for Joining Instance Localization and Segmentation

Object detection and segmentation are two challenging tasks in computer vision, which are usually considered as independent steps. In this paper, we propose a framework which jointly optimizes for both tasks and implicitly provides detection hypotheses and corresponding segmentations. Our novel approach is attachable to any of the available generalized Hough voting methods. We introduce Hough R...

متن کامل

Multi-Evidence Filtering and Fusion for Multi-Label Classification, Object Detection and Semantic Segmentation Based on Weakly Supervised Learning

Supervised object detection and semantic segmentation require object or even pixel level annotations. When there exist image level labels only, it is challenging for weakly supervised algorithms to achieve accurate predictions. The accuracy achieved by top weakly supervised algorithms is still significantly lower than their fully supervised counterparts. In this paper, we propose a novel weakly...

متن کامل

Classification d'images et localisation d'objets par des méthodes de type noyau de Fisher. (Fisher kernel based models for image classification and object localization)

In this dissertation, we propose models and methods targeting image understanding tasks. In particular, we focus on Fisher kernel based approaches for the image classification and object localization problems. We group our studies into the following three main chapters. First, we propose novel image descriptors based on non-i.i.d. image models. Our starting point is the observation that local i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1611.08991  شماره 

صفحات  -

تاریخ انتشار 2016