Biochemistry of eukaryotic homologous recombination.

نویسنده

  • Wolf-Dietrich Heyer
چکیده

The biochemistry of eukaryotic homologous recombination caught fire with the discovery that Rad51 is the eukaryotic homolog of the bacterial RecA and T4 UvsX proteins; and this field is still hot. The core reaction of homologous recombination, homology search and DNA strand invasion, along with the proteins catalyzing it, are conserved throughout evolution in principle. However, the increased complexity of eukaryotic genomes and the diversity of eukaryotic cell biology pose additional challenges to the recombination machinery. It is not surprising that this increase in complexity coincided with the evolution of new recombination proteins and novel support pathways, as well as changes in the properties of those eukaryotic recombination proteins that are evidently conserved in evolution. In humans, defects in homologous recombination lead to increased cancer predisposition, underlining the importance of this pathway for genomic stability and tumor suppression. This review will focus on the mechanisms of homologous recombination in eukaryotes as elucidated by the biochemical analysis of yeast and human proteins.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanism of eukaryotic homologous recombination.

Homologous recombination (HR) serves to eliminate deleterious lesions, such as double-stranded breaks and interstrand crosslinks, from chromosomes. HR is also critical for the preservation of replication forks, for telomere maintenance, and chromosome segregation in meiosis I. As such, HR is indispensable for the maintenance of genome integrity and the avoidance of cancers in humans. The HR rea...

متن کامل

Designing E1 Deleted Adenoviral Vector by Homologous Recombination

Adenoviruses are used extensively to deliver genes into mammalian cells, particularly where there is a requirement for high-level expression of transgene products in cultured cells, or for use as recombinant viral vaccines or in gene therapy. In spite of their usefulness, the construction of adenoviral vectors (AdV) is a cumbersome and lengthy process that is not readily amenable to the generat...

متن کامل

Genetic analysis of homologous recombination in Archaea: Haloferax volcanii as a model organism.

Homologous recombination is a fundamental cellular process that rearranges genes both within and between chromosomes, promotes repair of damaged DNA and underpins replication. Much of our understanding of recombination stems from pioneering studies of bacterial and eukaryotic systems such as Escherichia coli and Saccharomyces cerevisiae. Since most archaeal species are extremophilic and difficu...

متن کامل

The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway.

Double-strand DNA breaks are common events in eukaryotic cells, and there are two major pathways for repairing them: homologous recombination (HR) and nonhomologous DNA end joining (NHEJ). The various causes of double-strand breaks (DSBs) result in a diverse chemistry of DNA ends that must be repaired. Across NHEJ evolution, the enzymes of the NHEJ pathway exhibit a remarkable degree of structu...

متن کامل

Designing an Engineered Construct Gene Sensitive to Carbohydrate In-vitro and Candidate for Human Insulin Gene Therapy In-vivo

Background and Aim: Diabetes is a common disorder worldwide, and exhaustive efforts have been made to cure this disease. Gene therapy has considered as a potential curative method that has more stability in comparison with the other pharmaceutical methods. However, the application of gene therapy as a definitive treatment demands further investigation. This study aim is to prepare a suitable hi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Topics in current genetics

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2007