Faster Parameterized Algorithms for Minor Containment

نویسندگان

  • Isolde Adler
  • Frederic Dorn
  • Fedor V. Fomin
  • Ignasi Sau
  • Dimitrios M. Thilikos
چکیده

The theory of Graph Minors by Robertson and Seymour is one of the deepest and significant theories in modern Combinatorics. This theory has also a strong impact on the recent development of Algorithms, and several areas, like Parameterized Complexity, have roots in Graph Minors. Until very recently it was a common belief that Graph Minors Theory is mainly of theoretical importance. However, it appears that many deep results from Robertson and Seymour’s theory can be also used in the design of practical algorithms. Minor containment testing is one of algorithmically most important and technical parts of the theory, and minor containment in graphs of bounded branchwidth is a basic ingredient of this algorithm. In order to implement minor containment testing on graphs of bounded branchwidth, Hicks [NETWORKS 04] described an algorithm, that in time O(3 2 · (h+ k− 1)! ·m) decides if a graph G with m edges and branchwidth k, contains a fixed graph H on h vertices as a minor. That algorithm follows the ideas introduced by Robertson and Seymour in [J’CTSB 95]. In this work we improve the dependence on k of Hicks’ result by showing that checking if H is a minor of G can be done in time O(2(2k+1)·log k · h · 2 2 ·m). Our approach is based on a combinatorial object called rooted packing, which captures the properties of the potential models of subgraphs of H that we seek in our dynamic programming algorithm. This formulation with rooted packings allows us to speed up the algorithm when G is embedded in a fixed surface, obtaining the first single-exponential algorithm for minor containment testing. Namely, it runs in time 2O(k) · h · 2O(h) · n, with n = |V (G)|. Finally, we show that slight modifications of our algorithm permit to solve some related problems within the same time bounds, like induced minor or contraction minor containment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Faster Approximation Schemes and Parameterized Algorithms on H-Minor-Free and Odd-Minor-Free Graphs

We improve the running time of the general algorithmic technique known as Baker’s approach (1994) on H-minor-free graphs from O(n) to O(f(|H |)n) showing that it is fixed-parameter tractable w.r.t. the parameter |H |. The numerous applications include e.g. a 2-approximation for coloring and PTASes for various problems such as dominating set and max-cut, where we obtain similar improvements. On ...

متن کامل

Subexponential Algorithms for Partial Cover Problems

Partial Cover problems are optimization versions of fundamental and well studied problems like Vertex Cover and Dominating Set. Here one is interested in covering (or dominating) the maximum number of edges (or vertices) using a given number (k) of vertices, rather than covering all edges (or vertices). In general graphs, these problems are hard for parameterized complexity classes when paramet...

متن کامل

Preprocessing Subgraph and Minor Problems: When Does a Small Vertex Cover Help?

We prove a number of results around kernelization of problems parameterized by the size of a given vertex cover of the input graph. We provide three sets of simple general conditions characterizing problems admitting kernels of polynomial size. Our characterizations not only give generic explanations for the existence of many known polynomial kernels for problems like q-Coloring, Odd Cycle Tran...

متن کامل

Computing cutwidth and pathwidth of semi-complete digraphs via degree orderings

The notions of cutwidth and pathwidth of digraphs play a central role in the containment theory for tournaments, or more generally semi-complete digraphs, developed in a recent series of papers by Chudnovsky, Fradkin, Kim, Scott, and Seymour [2, 3, 4, 8, 9, 11]. In this work we introduce a new approach to computing these width measures on semi-complete digraphs, via degree orderings. Using the ...

متن کامل

Branch and Tree Decomposition Techniques for Discrete Optimization

This chapter gives a general overview of two emerging techniques for discrete optimization that have footholds in mathematics, computer science, and operations research: branch decompositions and tree decompositions. Branch decompositions and tree decompositions along with their respective connectivity invariants, branchwidth and treewidth, were first introduced to aid in proving the Graph Mino...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 412  شماره 

صفحات  -

تاریخ انتشار 2010