Penguin head movement detected using small accelerometers: a proxy of prey encounter rate.
نویسندگان
چکیده
Determining temporal and spatial variation in feeding rates is essential for understanding the relationship between habitat features and the foraging behavior of top predators. In this study we examined the utility of head movement as a proxy of prey encounter rates in medium-sized Antarctic penguins, under the presumption that the birds should move their heads actively when they encounter and peck prey. A field study of free-ranging chinstrap and gentoo penguins was conducted at King George Island, Antarctica. Head movement was recorded using small accelerometers attached to the head, with simultaneous monitoring for prey encounter or body angle. The main prey was Antarctic krill (>99% in wet mass) for both species. Penguin head movement coincided with a slow change in body angle during dives. Active head movements were extracted using a high-pass filter (5 Hz acceleration signals) and the remaining acceleration peaks (higher than a threshold acceleration of 1.0 g) were counted. The timing of head movements coincided well with images of prey taken from the back-mounted cameras: head movement was recorded within ±2.5 s of a prey image on 89.1±16.1% (N=7 trips) of images. The number of head movements varied largely among dive bouts, suggesting large temporal variations in prey encounter rates. Our results show that head movement is an effective proxy of prey encounter, and we suggest that the method will be widely applicable for a variety of predators.
منابع مشابه
How Elephant Seals (Mirounga leonina) Adjust Their Fine Scale Horizontal Movement and Diving Behaviour in Relation to Prey Encounter Rate
Understanding the diving behaviour of diving predators in relation to concomitant prey distribution could have major practical applications in conservation biology by allowing the assessment of how changes in fine scale prey distribution impact foraging efficiency and ultimately population dynamics. The southern elephant seal (Mirounga leonina, hereafter SES), the largest phocid, is a major pre...
متن کاملWhat a jerk: prey engulfment revealed by high-rate, super-cranial accelerometry on a harbour seal (Phoca vitulina).
A key component in understanding the ecological role of marine mammal predators is to identify how and where they capture prey in time and space. Satellite and archival tags on pinnipeds generally only provide diving and position information, and foraging is often inferred to take place in particular shaped dives or when the animal remains in an area for an extended interval. However, fast move...
متن کاملSupervised accelerometry analysis can identify prey capture by penguins at sea.
Determining where, when and how much animals eat is fundamental to understanding their ecology. We developed a technique to identify a prey capture signature for little penguins from accelerometry, in order to quantify food intake remotely. We categorised behaviour of captive penguins from HD video and matched this to time-series data from back-mounted accelerometers. We then trained a support ...
متن کاملIdentification of Prey Captures in Australian Fur Seals (Arctocephalus pusillus doriferus) Using Head-Mounted Accelerometers: Field Validation with Animal-Borne Video Cameras
This study investigated prey captures in free-ranging adult female Australian fur seals (Arctocephalus pusillus doriferus) using head-mounted 3-axis accelerometers and animal-borne video cameras. Acceleration data was used to identify individual attempted prey captures (APC), and video data were used to independently verify APC and prey types. Results demonstrated that head-mounted acceleromete...
متن کاملLinking animal-borne video to accelerometers reveals prey capture variability.
Understanding foraging is important in ecology, as it determines the energy gains and, ultimately, the fitness of animals. However, monitoring prey captures of individual animals is difficult. Direct observations using animal-borne videos have short recording periods, and indirect signals (e.g., stomach temperature) are never validated in the field. We took an integrated approach to monitor pre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of experimental biology
دوره 214 Pt 22 شماره
صفحات -
تاریخ انتشار 2011