Algebraic multilevel preconditioners with projectors∗
نویسندگان
چکیده
A new multilevel algebraic preconditioner for symmetric positive definite matrices is proposed. The projection and smoothing steps typical for textbook multigrids are replaced by a special coarsening algorithm which is based on orthogonal projectors onto kernels of subdomain matrices. The preconditioner is compared numerically with a few other multigrid preconditioners.
منابع مشابه
Numerical Experiments with Algebraic Multilevel Preconditioners
This paper numerically compares different algebraic multilevel preconditioners to solve symmetric positive definite linear systems with the preconditioned conjugate gradient algorithm on a set of examples arising mainly from discretization of second order partial differential equations. We compare several different smoothers, influence matrices and interpolation schemes.
متن کاملParallel algebraic multilevel Schwarz preconditioners for a class of elliptic PDE systems
Algebraic multilevel preconditioners for algebraic problems arising from the discretization of a class of systems of coupled elliptic partial differential equations (PDEs) are presented. These preconditioners are based on modifications of Schwarz methods and of the smoothed aggregation technique, where the coarsening strategy and the restriction and prolongation operators are defined using a po...
متن کاملSome Convergence Estimates For Algebraic Multilevel Preconditioners
We discuss the construction of algebraic multilevel preconditioners for the conjugate gradient method and derive explicit and sharp bounds for the convergence rates. We present several numerical examples that demonstrate the efficiency of the preconditioner. sparse approximate inverse, sparse matrix, algebraic multilevel method, preconditioning, conjugate gradient method, Krylov subspace method...
متن کاملAlgebraic Multilevel Preconditioners with Aggregations
Multilevel preconditioners can be used for solving systems arising from discretization of boundary value problems by the finite element method. Standard multilevel preconditioners use a hierarchy of nested finite element grids and corresponding finite element spaces. In some situations, it can be difficult or impossible to create such hierarchies. In these cases, it is still possible to constru...
متن کاملParallel algebraic multilevel Schwarz preconditioners for elliptic PDE systems∗
Algebraic multilevel preconditioners for linear systems arising from the discretization of a class of systems of coupled elliptic partial differential equations (PDEs) are presented. These preconditioners are based on modifications of Schwarz methods and of the smoothed aggregation technique, where the coarsening strategy and the restriction and prolongation operators are defined using a point-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003