On the Sum of Fractional Derivatives and M-accretive Operators

نویسنده

  • S - O. Londen
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong convergence theorem for finite family of m-accretive operators in Banach spaces

The purpose of this paper is to propose a compositeiterative scheme for approximating a common solution for a finitefamily of m-accretive operators in a strictly convex Banach spacehaving a uniformly Gateaux differentiable norm. As a consequence,the strong convergence of the scheme for a common fixed point ofa finite family of pseudocontractive mappings is also obtained.

متن کامل

Analytical Treatment of Volterra Integro-Differential Equations of Fractional Derivatives

In this paper the solution of the Volterra integro-differential equations of fractional order is presented. The proposed method consists in constructing the functional series, sum of which determines the function giving the solution of considered problem. We derive conditions under which the solution series, constructed by the method is convergent. Some examples are presented to verify convergen...

متن کامل

Some iterative method for finding a common zero of a finite family of accretive operators in Banach spaces

‎The purpose of this paper is to introduce a new mapping for a finite‎ ‎family of accretive operators and introduce an iterative algorithm‎ ‎for finding a common zero of a finite family of accretive operators‎ ‎in a real reflexive strictly convex Banach space which has a‎ ‎uniformly G^ateaux differentiable norm and admits the duality‎ ‎mapping $j_{varphi}$‎, ‎where $varphi$ is a gauge function ...

متن کامل

Computing Hadamard type operators of variable fractional order

Abstract. We consider Hadamard fractional derivatives and integrals of variable fractional order. A new type of fractional operator, which we call the Hadamard–Marchaud fractional derivative, is also considered. The objective is to represent these operators as series of terms involving integer-order derivatives only, and then approximate the fractional operators by a finite sum. An upper bound ...

متن کامل

On certain fractional calculus operators involving generalized Mittag-Leffler function

The object of this paper is to establish certain generalized fractional integration and differentiation involving generalized Mittag-Leffler function defined by Salim and Faraj [25]. The considered generalized fractional calculus operators contain the Appell's function $F_3$ [2, p.224] as kernel and are introduced by Saigo and Maeda [23]. The Marichev-Saigo-Maeda fractional calculus operators a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994