Applying Machine Learning Methods for Time Series Forecasting

نویسنده

  • Ben Choi
چکیده

This paper describes a strategy on learning from time series data and on using learned model for forecasting. Time series forecasting, which analyzes and predicts a variable changing over time, has received much attention due to its use for forecasting stock prices, but it can also be used for pattern recognition and data mining. Our method for learning from time series data consists of detecting patterns within the data, describing the detected patterns, clustering the patterns, and creating a model to describe the data. It uses a change-point detection method to partition a time series into segments, each of the segments is then described by an autoregressive model. Then, it partitions all the segments into clusters, each of the clusters is considered as a state for a Markov model. It then creates the transitions between states in the Markov model based on the transitions between segments as the time series progressing. Our method for using the learned model for forecasting consists of indentifying current state, forecasting trends, and adapting to changes. It uses a moving window to monitor real-time data and creates an autoregressive model for the recently observed data, which is then matched to a state of the learned Markov model. Following the transitions of the model, it forecasts future trends. It also continues to monitor real-time data and makes corrections if necessary for adapting to changes. We implemented and successfully tested the methods for an application of load balancing on a parallel computing system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Machine learning algorithms for time series in financial markets

This research is related to the usefulness of different machine learning methods in forecasting time series on financial markets. The main issue in this field is that economic managers and scientific society are still longing for more accurate forecasting algorithms. Fulfilling this request leads to an increase in forecasting quality and, therefore, more profitability and efficiency. In this pa...

متن کامل

Time series forecasting of Bitcoin price based on ARIMA and machine learning approaches

Bitcoin as the current leader in cryptocurrencies is a new asset class receiving significant attention in the financial and investment community and presents an interesting time series prediction problem. In this paper, some forecasting models based on classical like ARIMA and machine learning approaches including Kriging, Artificial Neural Network (ANN), Bayesian method, Support Vector Machine...

متن کامل

Deep Learning Architecture for Univariate Time Series Forecasting

This paper studies the problem of applying machine learning with deep architecture to time series forecasting. While these techniques have shown promise for modeling static data, applying them to sequential data is gaining increasing attention. This paper overviews the particular challenges present in applying Conditional Restricted Boltzmann Machines (CRBM) to univariate time-series forecastin...

متن کامل

Employing local modeling in machine learning based methods for time-series prediction

Time series prediction has been widely used in a variety of applications in science, engineering, finance, etc. There are two different modeling options for constructing forecasting models in time series prediction. Global modeling constructs a model which is independent from user queries. On the contrary, local modeling constructs a local model for each different query from the user. In this p...

متن کامل

Sales forecasting using WaveNet within the framework of the Kaggle competition

We took part in the Corporacion Favorita Grocery Sales Forecasting competition[1] hosted on Kaggle and achieved the 2nd place. In this abstract paper, we present an overall analysis and solution to the underlying machine-learning problem based on time series data, where major challenges are identified and corresponding preliminary methods are proposed. Our approach is based on the adaptation of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009