Genealogical structure among alleles regulating self-incompatibility in natural populations of flowering plants.
نویسنده
چکیده
A method is proposed for characterizing the structure of genealogies among alleles that regulate self-incompatibility in flowering plants. Expected distributions of ratios of divergence times among alleles, scaled by functions of allele number, were generated by numerical simulation. These distributions appeared relatively insensitive to the particular parameter values assigned in the simulations over a fourfold range in effective population size and a 100-fold range in mutation rate. Generalized least-squares estimates of the scaled indices were obtained from genealogies reconstructed from nucleotide sequences of self-incompatibility alleles from natural populations of two solanaceous species. Comparison of the observed indices to the expected distributions generated by numerical simulation indicated that the allelic genealogy of one species appeared consistent with the symmetric balancing selection generated by self-incompatibility. However, the allelic genealogy of the second species showed unusually long terminal branches, suggesting the operation of additional evolutionary processes.
منابع مشابه
Plant genetics: Seeing selection in S allele sequences
The self-incompatibility (S) genes of flowering plants are, with the fungal incompatibility and mammalian major histocompatibility (MHC) loci, among the most highly polymorphic loci known. In Oenothera organensis, for example, 35 alleles have been detected [1] by laborious compatibility tests between plants of this endemic species, the total population size of which may not exceed 5000 [2]. Dif...
متن کاملThe Study of Morphological Traits and Identification of Self-incompatibility Alleles in Almond Cultivars and Genotypes
The evaluation of an almond collection using morphological variables and identification of self-incompatibility genotype is useful for selecting pollinizers and for the design of crossing in almond breeding programs. In this study, important morphological traits and self-incompatibilities in 71 almond cultivars and genotypes were studied. Simple and multiplex specific PCR analyses were used in...
متن کاملPlant self-incompatibility in natural populations: a critical assessment of recent theoretical and empirical advances.
Self-incompatibility systems in plants are genetic systems that prevent self-fertilization in hermaphrodites through recognition and rejection of pollen expressing the same allelic specificity as that expressed in the pistils. The evolutionary properties of these self-recognition systems have been revealed through a fascinating interplay between empirical advances and theoretical developments. ...
متن کاملEvolutionary dynamics of sporophytic self-incompatibility alleles in plants.
The stationary frequency distribution and allelic dynamics in finite populations are analyzed through stochastic simulations in three models of single-locus, multi-allelic sporophytic self-incompatibility. The models differ in the dominance relationships among alleles. In one model, alleles act codominantly in both pollen and style (SSIcod), in the second, alleles form a dominance hierarchy in ...
متن کاملشناسایی و تعیین ویژگیهای ژنومی آللهای خودناسازگاری در گونههای وحشی گلابی
The Pyrus species exhibit the gametophytic self -incompatibility which is considered to be the most widespread self-incompatibility system among flowering plants. This system prevents self-fertilization through a specific pollen-pistil recognition mechanism. The S-allele diversity in the Iranian genotypes indicates that the pear germplasm of Iran can be an excellent source of variability for br...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genetics
دوره 147 3 شماره
صفحات -
تاریخ انتشار 1997