Improved Beamformer with Weighted Source Region Suppression for Coherent Meg Source Localization

نویسندگان

  • Junpeng Zhang
  • Dezhong Yao
  • D. Yao
چکیده

Beamformer is one of the main techniques for spatio-temporal neuroelectromagnetic source reconstruction. However, the classical Beamformer is extremely sensitive to strongly coherent sources, thereby encountering difficulty in localizing the highly correlated bilateral auditory cortices in auditory evoked field (AEF) or auditory steady state evoked potential. The multiple constrained minimum-variance Beamformer with coherent source region suppression (Beamformer-CS) can potentially overcome such difficulties. However, when coherent interferer is located close to the edges of the suppression region, Beamformer-CS has localization bias and the closer it is, the larger it will be. Here, we present an improved Beamformer-CS that can localize coherent sources with much less localization bias, especially in the case of the interferer close to the edges of the suppression region. First, based on approximate information about source energy distribution from other neuroimaging techniques, a region encompassing the coherent interfering sources is defined. Then, the dominant eigenvectors of the lead field matrix, weighted using source energy information obtained by other imaging method, for the suppression region is incorporated into Beamformer design as hard null constraints. Such weighting strategy is able to improve the localization performance. Simulation test shows that, compared to Beamformer-CS, the new weighting approach is of much smaller localization bias, sharper peak of the estimated sources, more robust against noise, and less sensitiveness to the number of the eigenvector components for the suppression region, as is also confirmed by real AEF data test.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combination of Beamforming and Synchronization Methods for Epileptic Source Localization, using Simulated EEG Signals

Localization of sources in patients with focal seizure has recently attracted many attentions. In the severe cases of focal seizure, there is a possibility of doing neurosurgery operation to remove the defected tissue. The prosperity of this heavy operation completely depends on the accuracy of source localization. To increase this accuracy, this paper presents a new weighted beamforming method...

متن کامل

The Effect of Head Model Simplification on Beamformer Source Localization

Beamformers are a widely-used tool in brain analysis with magnetoencephalography (MEG) and electroencephalography (EEG). For the construction of the beamformer filters realistic head volume conductor modeling is necessary for accurately computing the EEG and MEG leadfields, i.e., for solving the EEG and MEG forward problem. In this work, we investigate the influence of including realistic head ...

متن کامل

Beamformer Source Analysis and Connectivity on Concurrent EEG and MEG Data during Voluntary Movements

Electroencephalography (EEG) and magnetoencephalography (MEG) are the two modalities for measuring neuronal dynamics at a millisecond temporal resolution. Different source analysis methods, to locate the dipoles in the brain from which these dynamics originate, have been readily applied to both modalities alone. However, direct comparisons and possible advantages of combining both modalities ha...

متن کامل

Source Activity Correlation Effects on LCMV Beamformers in a Realistic Measurement Environment

In EEG and MEG studies on brain functional connectivity and source interactions can be performed at sensor or source level. Beamformers are well-established source-localization tools for MEG/EEG signals, being employed in source connectivity studies both in time and frequency domain. However, it has been demonstrated that beamformers suffer from a localization bias due to correlation between so...

متن کامل

Beamforming Techniques Applied in EEG Source Analysis

The electrical activity of the human brain causes time-varying potential differences on the head surface. The electroencephalogram (EEG) is a measurement of these potential differences between electrodes on the head. When the electrical brain activity is limited to a small region in the brain (e.g., during epileptic seizures), the source region within the brain can be localised by analysing the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010