A Stacking-based Approach to Twitter User Geolocation Prediction

نویسندگان

  • Bo Han
  • Paul Cook
  • Timothy Baldwin
چکیده

We implement a city-level geolocation prediction system for Twitter users. The system infers a user’s location based on both tweet text and user-declared metadata using a stacking approach. We demonstrate that the stacking method substantially outperforms benchmark methods, achieving 49% accuracy on a benchmark dataset. We further evaluate our method on a recent crawl of Twitter data to investigate the impact of temporal factors on model generalisation. Our results suggest that user-declared location metadata is more sensitive to temporal change than the text of Twitter messages. We also describe two ways of accessing/demoing our system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Twitter User Geolocation Using a Unified Text and Network Prediction Model

We propose a label propagation approach to geolocation prediction based on Modified Adsorption, with two enhancements: (1) the removal of “celebrity” nodes to increase location homophily and boost tractability; and (2) the incorporation of text-based geolocation priors for test users. Experiments over three Twitter benchmark datasets achieve state-of-the-art results, and demonstrate the effecti...

متن کامل

Text-Based Twitter User Geolocation Prediction

Geographical location is vital to geospatial applications like local search and event detection. In this paper, we investigate and improve on the task of text-based geolocation prediction of Twitter users. Previous studies on this topic have typically assumed that geographical references (e.g., gazetteer terms, dialectal words) in a text are indicative of its author’s location. However, these r...

متن کامل

A Simple Scalable Neural Networks based Model for Geolocation Prediction in Twitter

This paper describes a model that we submitted to W-NUT 2016 Shared task #1: Geolocation Prediction in Twitter. Our model classifies a tweet or a user to a city using a simple neural networks structure with fully-connected layers and average pooling processes. From the findings of previous geolocation prediction approaches, we integrated various user metadata along with message texts and traine...

متن کامل

Geolocation Prediction in Twitter Using Location Indicative Words and Textual Features

Knowing the location of a social media user and their posts is important for various purposes, such as the recommendation of location-based items/services, and locality detection of crisis/disasters. This paper describes our submission to the shared task “Geolocation Prediction in Twitter” of the 2nd Workshop on Noisy User-generated Text. In this shared task, we propose an algorithm to predict ...

متن کامل

Twitter Geolocation Prediction Shared Task of the 2016 Workshop on Noisy User-generated Text

This paper describes the shared task for the English Twitter geolocation prediction associated with WNUT 2016. We discuss details of the task settings, data preparation and participant systems. The derived dataset and performance figures from each system provide baselines for future research in this realm.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013