TIPE3 protein promotes breast cancer metastasis through activating AKT and NF-κB signaling pathways

نویسندگان

  • Kaili Lian
  • Chao Ma
  • Chunyan Hao
  • Yan Li
  • Na Zhang
  • Youhai H. Chen
  • Suxia Liu
چکیده

TIPE3 (TNFAIP8L3) is the transfer protein of phosphoinositide second messengers that promote cancer. Its role in breast cancer has not been evaluated. We report here that TIPE3 protein was significantly upregulated in human breast cancer tissues as compared with adjacent non-tumor tissues from the same patients. The level of TIPE3 protein in invasive ductal carcinoma was significant higher than that in ductal carcinoma in situ (DCIS), and the level of TIPE3 in lymphatic metastasized carcinoma was higher than that in invasive ductal carcinoma from the same patients. Additionally, the level of TIPE3 protein was positively correlated with the level of human epidermal growth factor receptor 2 (HER-2), and TIPE3 expression was significantly higher in high-invasive breast cancer cell lines than that in low-invasive cell lines. Importantly, TIPE3 knockdown in breast cancer cells inhibited cell proliferation, migration, and invasion in vitro, whereas TIPE3 overexpression had the opposite effect. In mice, TIPE3 expression significantly promoted the metastasis of breast cancer cells. TIPE3 expression also increased the level of MMP2 and uPA, and the activation of the AKT and NF-κB signaling pathways. These results demonstrate that TIPE3 may promote breast cancer growth and metastasis through AKT and NF-κB, and may serve as a potential biomarker for breast cancer metastasis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Group IIa sPLA2 inhibition attenuates NF-κB activity and promotes apoptosis of lung cancer cells.

BACKGROUND/AIM Group IIa secretory phospholipase A2 (sPLA2 IIa) has been implicated in the regulation of metastasis of non-small cell lung cancer (NSCLC) and the present study investigates its contribution to lung cancer growth and progression. PLA2s initiate signaling in several pathways that mediate cell survival including phosphatidylinositol 3-kinase-AKT (PI3K-AKT), p38 mitogen-activated pr...

متن کامل

The Role of Cyclooxygenase-2 in Signaling Pathways Promoting Colorectal Cancer

Colorectal cancer is one of the most common cancers in the world. Various factors are involved in the development and progression of this disease. One of these agents is cyclooxygenase-2 (COX-2). COX-2 is a product of the PTGS2 gene and converts free arachidonic acid to prostaglandins. COX-2 is not naturally expressed in most normal cells. Noticeably, the increased expression of COX-2 has been ...

متن کامل

Acidosis promotes invasiveness of breast cancer cells through ROS-AKT-NF-κB pathway

It is well known that acidic microenvironment promotes tumorigenesis, however, the underlying mechanism remains largely unknown. In the present study, we show that acidosis promotes invasiveness of breast cancer cells through a series of signaling events. First, our study indicates that NF-κB is a key factor for acidosis-induced cell invasion. Acidosis activates NF-κB without affecting STAT3 ac...

متن کامل

Tunicamycin suppresses breast cancer cell growth and metastasis via regulation of the protein kinase B/nuclear factor-κB signaling pathway

Breast cancer is one of the most common metastatic tumor types. Reports have suggested that Tunicamycin may inhibit the aggressiveness of cancer cells by promoting their apoptosis. In the present study, the inhibitory effects of Tunicamycin were investigated and the potential molecular mechanism underlying the Tunicamycin-inhibited growth and aggressiveness of breast cancer cells was explored. ...

متن کامل

VGB3 Induces Apoptosis by Inhibiting Phosphorylation of NF-κB p65 at Serine 536 in the Human Umbilical Vein Endothelial Cells

Background and objectives: Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inhibition results in an increase in apoptosis. It has been demonstrated that NF-κB subunit p65 phosphorylation at the IκB kinase phosphorylation site serine 536 (Ser536) is essential for the NF-κB nuclear translocation and activation. Therefore, NF-κB can be downregulated by suppressing its phosph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017