Moduli spaces of isoperiodic forms on Riemann surfaces
نویسنده
چکیده
This paper describes the global geometry of the moduli space of holomorphic 1-forms (X,ω) with fixed periods on varying Riemann surfaces of genus g. It establishes completeness for general g and then explores several features of the case g = 2, which yields the first detailed, global picture of the transverse dynamics of the Teichmüller geodesic flow.
منابع مشابه
Navigating moduli space with complex twists
We discuss a common framework for studing twists of Riemann surfaces coming from earthquakes, Teichmüller theory and Schiffer variations, and use it to analyze geodesics ins the moduli space of isoperiodic 1-forms.
متن کاملA Remark on the Virtual Homotopical Dimension of Some Moduli Spaces of Stable Riemann Surfaces
Inspired by his vanishing results of tautological classes and by Harer’s computation of the virtual cohomological dimension of the mapping class group, Looijenga conjectured that the moduli space of smooth Riemann surfaces admits a stratification by affine subsets with a certain number of layers. Similarly, Roth and Vakil extended the conjecture to the moduli spaces of Riemann surfaces of compa...
متن کاملWeighted composition operators on measurable differential form spaces
In this paper, we consider weighted composition operators betweenmeasurable differential forms and then some classic properties of these operators are characterized.
متن کاملA Remark on the Homotopical Dimension of Some Moduli Spaces of Stable Riemann Surfaces
Using a result of Harer, we prove certain upper bounds for the homotopical/cohomological dimension of the moduli spaces of Riemann surfaces of compact type, of Riemann surfaces with rational tails and of Riemann surfaces with at most k rational components. These bounds would follow from conjectures of Looijenga and Roth-
متن کامل1 9 O ct 1 99 8 Ω - Admissible Theory II : New metrics on determinant of cohomology And Their applications to moduli spaces of punctured Riemann surfaces
For singular metrics, Ray and Singer’s analytic torsion formalism cannot be applied. Hence we do not have the so-called Quillen metric on determinant of cohomology with respect to a singular metric. In this paper, we introduce a new metric on determinant of cohomology by adapting a totally different approach. More precisely, by strengthening results in the first paper of this series, we develop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012