The ubiquitin-interacting motif protein, S5a, is ubiquitinated by all types of ubiquitin ligases by a mechanism different from typical substrate recognition.
نویسندگان
چکیده
S5a/Rpn10 is a ubiquitin (Ub)-binding protein that is a subunit of the 26S proteasome but also exists free in the cytosol. It binds poly-Ub chains through its two Ub-interacting motifs (UIMs). We discovered that, unlike typical substrates of Ub ligases (E3s), S5a can be ubiquitinated by all E3s tested including multimeric and monomeric Ring finger E3s (MuRF1, Siah2, Parkin, APC, and SCF(betaTRCP1)), the U-box E3, CHIP, and HECT domain E3s (E6AP and Nedd4) when assayed with UbcH5 or related Ub-conjugating enzymes. However, the E2s, UbcH1 and UbcH13/Uev1a, which function by distinct mechanisms, do not support S5a ubiquitination. Thus, S5a can be used for assay of probably all E3s with UbcH5. Ubiquitination of S5a results from its binding to Ub chains on the E3 (after self-ubiquitination) or on the substrate, as a mutant lacking the UIM domain was not ubiquitinated. Furthermore, if the S5a UIM domains were fused to GST, the protein was rapidly ubiquitinated by MuRF1 and CHIP. In addition, polyubiquitination (but not monoubiquitination) of MuRF1 allowed S5a to bind to MuRF1 and accelerated S5a ubiquitination. This tendency of S5a to associate with the growing Ub chain can explain how S5a, unlike typical substrates, which are recognized by certain E3s through specific motifs, is ubiquitinated by all E3s tested and is rapidly degraded in vivo.
منابع مشابه
Structure of the ubiquitin-interacting motif of S5a bound to the ubiquitin-like domain of HR23B.
Ubiquitination, a modification in which single or multiple ubiquitin molecules are attached to a protein, serves signaling functions that control several cellular processes. The ubiquitination signal is recognized by downstream effectors, many of which carry a ubiquitin-interacting motif (UIM). Such interactions can be modulated by regulators carrying a ubiquitin-like (UbL) domain, which binds ...
متن کاملRegulation of Nedd4-2 self-ubiquitination and stability by a PY motif located within its HECT-domain.
Ubiquitin ligases play a pivotal role in substrate recognition and ubiquitin transfer, yet little is known about the regulation of their catalytic activity. Nedd4 (neural-precursor-cell-expressed, developmentally down-regulated 4)-2 is an E3 ubiquitin ligase composed of a C2 domain, four WW domains (protein-protein interaction domains containing two conserved tryptophan residues) that bind PY m...
متن کاملMonoubiquitination of RPN10 regulates substrate recruitment to the proteasome.
The proteasome recognizes its substrates via a diverse set of ubiquitin receptors, including subunits Rpn10/S5a and Rpn13. In addition, shuttling factors, such as Rad23, recruit substrates to the proteasome by delivering ubiquitinated proteins. Despite the increasing understanding of the factors involved in this process, the regulation of substrate delivery remains largely unexplored. Here we r...
متن کاملUC Irvine UC Irvine Previously Published Works Title
Ubiquitination the linkage of one or more molecules of the protein ubiquitin to another protein regulates a wide range of biological processes in all eukaryotes. We review the proteome-wide strategies that are being used to study aspects of ubiquitin biology, including substrates, components of the proteasome and ubiquitin ligases, and deubiquitination. Published: 29 September 2005 Genome Biolo...
متن کاملHerpes simplex virus type 1 immediate-early protein ICP0 and is isolated RING finger domain act as ubiquitin E3 ligases in vitro.
Proteasome-dependent degradation of ubiquitinated proteins plays a key role in many important cellular processes. Ubiquitination requires the E1 ubiquitin activating enzyme, an E2 ubiquitin conjugating enzyme, and frequently a substrate-specific ubiquitin protein ligase (E3). One class of E3 ubiquitin ligases has been shown to contain a common zinc-binding RING finger motif. We have previously ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 284 19 شماره
صفحات -
تاریخ انتشار 2009