Threshold effects of nitric oxide-induced toxicity and cellular responses in wild-type and p53-null human lymphoblastoid cells.

نویسندگان

  • Chun-Qi Li
  • Bo Pang
  • Tanyel Kiziltepe
  • Laura J Trudel
  • Bevin P Engelward
  • Peter C Dedon
  • Gerald N Wogan
چکیده

Toxicity induced by nitric oxide (NO(*)) has been extensively investigated in many in vitro and in vivo experimental models. Recently, our laboratories found that both concentration and cumulative total dose are critical determinants of cell death caused by NO(*). Here, we report results of studies designed to define total dose thresholds and threshold effects for several NO(*)-induced toxicity and cellular responses and to determine impacts of p53 on them. We exposed human lymphoblastoid TK6 cells harboring wild-type p53 and isogenic p53-null NH32 cells to NO(*) delivered by a membrane delivery system. Cells were exposed at a steady state concentration of 0.6 microM for varying lengths of time to deliver increasing cumulative doses (expressed in units of microM min), and several end points of cytotoxicity and mutagenesis were quantified. Threshold doses for NO(*)-induced cytotoxicity were 150 microM min in TK6 cells and 300 microM min in NH32 cells, respectively. Threshold doses for NO(*)-induced apoptosis were identical to those for cytotoxicity, but mitochondrial depolarization thresholds were lower than those for cytotoxicity and apoptosis in both cell types. To gain insight into underlying mechanisms, cells of both types were exposed to sublethal (33% of cytotoxicity threshold), cytotoxicity threshold, or toxic (twice the cytotoxicity threshold) doses of NO(*). In TK6 cells (p53), the sublethal threshold dose induced DNA double-strand breaks, but nucleobase deamination products (xanthine, hypoxanthine, and uracil) in DNA were increased only modestly (<50%) by toxic doses. Increased mutant fraction at the thymidine kinase gene (TK1) locus was observed only at the toxic dose of NO(*). Treatment of NH32 cells with NO(*) at the threshold or toxic dose elevated mutagenesis of the TK1 gene, but did not cause detectable levels of DNA double-strand breaks. At similar levels of cell viability, the frequency of DNA recombinational repair was higher in p53-null NH32 cells than in wild-type TK6 cells. NO(*) treatment induced p53-independent cell cycle arrest predominately at the S phase. Akt signaling pathway and antioxidant proteins were involved in the modulation of toxic responses of NO(*). These findings indicate that exposure to doses of NO(*) at or above the cytotoxicity threshold dose induces DNA double-strand breaks, mutagenesis, and protective cellular responses to NO(*) damage. Furthermore, recombinational repair of DNA may contribute to resistance to NO(*) toxicity and potentially increase the risk of mutagenesis. The p53 plays a central role in these responses in human lymphoblastoid cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitric oxide-induced genotoxicity, mitochondrial damage, and apoptosis in human lymphoblastoid cells expressing wild-type and mutant p53.

Nitric oxide (NO(*)) is mutagenic and, under appropriate conditions of exposure, also induces apoptosis in many in vitro and in vivo experimental models. Biochemical and cellular mechanisms through which NO(*) induces apoptosis are incompletely understood, but involve p53/mitochondria-dependent signaling pathways. In this study, we exposed human lymphoblastoid cells harboring either wild-type (...

متن کامل

The effect of different concentrations of iron oxide nanoparticles on the expression of p53 gene in human amniotic membrane-derived mesenchymal stem cells  

Superparamagnetic iron oxide nanoparticles (SPIONs) have made extensive advances in nanotechnology. The unique properties of these particles have expanded their application in various fields, including medicine. One of these applications is non-invasive analysis for cell tracking. However, the possibility of toxicity in cells is reported by these nanoparticles. Due to the fact that cellular dam...

متن کامل

Apoptotic signaling pathways induced by nitric oxide in human lymphoblastoid cells expressing wild-type or mutant p53.

Loss of p53 function by inactivating mutations results in abrogation of NO*induced apoptosis in human lymphoblastoid cells. Here we report characterization of apoptotic signaling pathways activated by NO* in these cells by cDNA microarray expression and immunoblotting. A p53-mediated transcriptional response to NO* was observed in p53-wild-type TK6, but not in closely related p53-mutant WTK1, c...

متن کامل

CuO nanoparticles induce cytotoxicity and apoptosis in human K562 cancer cell line via mitochondrial pathway, through reactive oxygen species and P53

Objective(s): This study focused on determining cytotoxic effects of copper oxide nanoparticles (CuO NPs) on chronic myeloid leukemia (CML) K562 cell line in a cell-specific manner and its possible mechanism of cell death. We investigated the cytotoxicity of CuO NPs against K562 cell line (cancerous cell) and peripheral blood mononuclear cell (normal cell). Materials and Methods: The toxicity w...

متن کامل

Anti-cancer Potential of Captopril and Botulinum Toxin Type-A and Associated p53 Gene Apototic Stimulating Activity

Mutational inactivation of p53 is a key player in the development of human cancer. Thus, retrieving the tumor suppressor activity of p53 gene is considered a novel strategy in cancer therapy. Current study aimed to investigate the anti-cancer potentials of botulinum toxin type-A (BTX-A) and captopril as a trial to shed light on effective anti-cancer therapy with lower side effects. Cytotoxic ef...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Chemical research in toxicology

دوره 19 3  شماره 

صفحات  -

تاریخ انتشار 2006