An Efficient Secure Anonymous Proxy Signature Scheme

نویسندگان

  • Jue-Sam Chou
  • Shih-Che Hung
  • Yalin Chen
چکیده

Proxy signature schemes can be used in many business applications such as when the original signer is not present to sign important documents. Any proxy signature scheme has to meet the identifiability, undeniability, verifiability and unforgeability security requirements. In some conditions, it may be necessary to protect the proxy signer’s privacy from outsiders or third parties. Recently, several studies about proxy signature schemes have been conducted but only Yu et al.’ anonymous proxy signature scheme proposed in 2009 attempting to protect the proxy signer’s privacy from outsiders. They claimed their scheme can make the proxy signer anonymous. However, based on our research, we determined that this was not the case and the proxy signer’s privacy was not anonymous. Hence, in this paper, we propose a new anonymous proxy signature scheme that truly makes the proxy signer anonymous while making it more secure and efficient when compared with Yu et al.’s scheme in 2009. Our proxy signature scheme consists of two constructions. First, we mainly use random numbers and bilinear pairings to attain the anonymous property in our proxy. Secondly, we increase the security, integrity, and efficiency of our proxy through modifications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A provable secure anonymous proxy signature scheme without random oracles

In order to protect the proxy signers’ privacy, many anonymous proxy signature schemes which are also called proxy ring signatures, have been proposed. Although the provable security in the random oracle model has received a lot of criticism, there is no provable secure anonymous proxy signature scheme without random oracles. In this paper, we propose the first provable secure anonymous proxy s...

متن کامل

A Proxy Multi-Signature Scheme with Anonymous Vetoable Delegation

Frequently a group of people jointly decide and authorize a specific person as a representative in some business/poitical occasions, e.g., the board of a company authorizes the chief executive officer to close a multi-billion acquisition deal. In this paper, an integrated proxy multi-signature scheme that allows anonymously vetoable delegation is proposed. This protocol integrates mechanisms of...

متن کامل

A New Anonymous but Accountable Secure Proxy Signature Scheme

Privacy has become one of the most important human rights of the modern age. In order to verify the validity of the proxy signature, the verifier need get the original signers’ public key and the proxy signer’s public key. Obviously, the verification would leak the relationship between the proxy signer and the original signer. Using the technology of pseudonym, in this paper, we propose a simpl...

متن کامل

Efficient Generic Forward-Secure Signatures and Proxy Signatures

We propose a generic method to construct forward-secure signature schemes from standard signature schemes. The proposed construction is more computationally efficient than previously proposed schemes. In particular, the key updating operation in the proposed scheme is orders of magnitude more computationally efficient than previous schemes, making it attractive for a variety of applications, su...

متن کامل

An ECC-Based Mutual Authentication Scheme with One Time Signature (OTS) in Advanced Metering Infrastructure

Advanced metering infrastructure (AMI) is a key part of the smart grid; thus, one of the most important concerns is to offer a secure mutual authentication.  This study focuses on communication between a smart meter and a server on the utility side. Hence, a mutual authentication mechanism in AMI is presented based on the elliptic curve cryptography (ECC) and one time signature (OTS) consists o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2011  شماره 

صفحات  -

تاریخ انتشار 2011