Magnetic field induced entropy change and magnetoelasticity in Ni-Mn-Ga alloys

نویسندگان

  • Jordi Marcos
  • Antoni Planes
  • Fèlix Casanova
  • Xavier Batlle
چکیده

The magnetocaloric effect that originates from the martensitic transition in the ferromagnetic Ni-Mn-Ga shape-memory alloy is studied. We show that this effect is controlled by the magnetostructural coupling at both the martensitic variant and magnetic domain length scales. A large entropy change induced by moderate magnetic fields is obtained for alloys in which the magnetic moment of the two structural phases is not very different. We also show that this entropy change is not associated with the entropy difference between the martensitic and the parent phase—arising from the change in the crystallographic structure—which has been found to be independent of the magnetic field within this range of fields.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental Study on the Magnetomechanical Characteristics of Ni-Mn-Ga Ferromagnetic Shape Memory Alloy Single Crystals

Magnetic shape memory properties of Ni-Mn-Ga single crystals were characterized by measurement of stress-induced martensite reorientation under constant magnetic fields. Also magnetic field-induced strain as a function of the applied magnetic field under different constant compressive stress levels has been investigated. All the experiments were performed at room temperature in which the sample...

متن کامل

Contributions to the Transformation Entropy Change and Influencing Factors in Metamagnetic Ni-Co-Mn-Ga Shape Memory Alloys

Ni-Co-Mn-Ga ferromagnetic shape memory alloys show metamagnetic transition from ferromagnetic austenite to paramagnetic (or weak-magnetic) martensite for a limited range of Co contents. The temperatures of the structural and magnetic transitions depend strongly on composition and atomic order degree, in such a way that combined composition and thermal treatment allows obtaining martensitic tran...

متن کامل

Ab Initio and Monte Carlo Approaches For the Magnetocaloric Effect in Co- and In-Doped Ni-Mn-Ga Heusler Alloys

The complex magnetic and structural properties of Co-doped Ni-Mn-Ga Heusler alloys have been investigated by using a combination of first-principles calculations and classical Monte Carlo simulations. We have restricted the investigations to systems with 0, 5 and 9 at% Co. Ab initio calculations show the presence of the ferrimagnetic order of austenite and martensite depending on the compositio...

متن کامل

Co and In Doped Ni-Mn-Ga Magnetic Shape Memory Alloys: A Thorough Structural, Magnetic and Magnetocaloric Study

In Ni-Mn-Ga ferromagnetic shape memory alloys, Co-doping plays a major role in determining a peculiar phase diagram where, besides a change in the critical temperatures, a change of number, order and nature of phase transitions (e.g., from ferromagnetic to paramagnetic or from paramagnetic to ferromagnetic, on heating) can be obtained, together with a change in the giant magnetocaloric effect f...

متن کامل

Increasing magnetoplasticity in polycrystalline Ni-Mn-Ga by reducing internal constraints through porosity.

Foams with 55% and 76% open porosity were produced from a Ni-Mn-Ga magnetic shape-memory alloy by replication casting. These polycrystalline martensitic foams display a fully reversible magnetic-field-induced strain of up to 0.115% without bias stress, which is about 50 times larger than nonporous, fine-grained Ni-Mn-Ga. This very large improvement is attributed to the bamboolike structure of g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002