Error estimates for well-balanced and time-split schemes on a damped semilinear wave equation

نویسندگان

  • Debora Amadori
  • Laurent Gosse
  • DEBORA AMADORI
چکیده

A posteriori L error estimates (in the sense of [12, 23]) are derived for both well-balanced (WB) and fractional-step (FS) numerical approximations of the unique weak solution of the Cauchy problem for the 1D semilinear damped wave equation. For setting up the WB algorithm, we proceed by rewriting it under the form of an elementary 2 × 2 system which linear convective structure allows to reduce the Godunov scheme with optimal Courant number (corresponding to ∆t = ∆x) to a wavefront-tracking algorithm free from any step of projection onto piecewise constant functions. A fundamental difference in the total variation estimates is proved, which partly explains the discrepancy of the FS method when the dissipative (sink) term displays an explicit dependence in the space variable. Numerical tests are performed by means of several exact solutions of the linear damped wave equation. MSC: 35L71, 65M15, 74J20.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A posteriori $ L^2(L^2)$-error estimates with the new version of streamline diffusion method for the wave equation

In this article, we study the new streamline diffusion finite element for treating the linear second order hyperbolic initial-boundary value problem. We prove a posteriori $ L^2(L^2)$ and error estimates for this method under minimal regularity hypothesis. Test problem of an application of the wave equation in the laser is presented to verify the efficiency and accuracy of the method.

متن کامل

Exponentially Accurate Hamiltonian Embeddings of Symplectic A-stable Runge–kutta Methods for Hamiltonian Semilinear Evolution Equations

We prove that a class of A-stable symplectic Runge–Kutta time semidiscretizations (including the Gauss–Legendre methods) applied to a class of semilinear Hamiltonian PDEs which are well-posed on spaces of analytic functions with analytic initial data can be embedded into a modified Hamiltonian flow up to an exponentially small error. As a consequence, such timesemidiscretizations conserve the m...

متن کامل

On Wavelet-Galerkin Methods for Semilinear pabolic Equations with Additive Noise

We consider the semilinear stochastic heat equation perturbed by additive noise. After time-discretization by Euler’s method the equation is split into a linear stochastic equation and a non-linear random evolution equation. The linear stochastic equation is discretized in space by a non-adaptive wavelet-Galerkin method. This equation is solved first and its solution is substituted into the non...

متن کامل

On Wavelet-Galerkin Methods for Semilinear Parabolic Equations with Additive Noise

We consider the semilinear stochastic heat equation perturbed by additive noise. After time-discretization by Euler’s method the equation is split into a linear stochastic equation and a non-linear random evolution equation. The linear stochastic equation is discretized in space by a non-adaptive wavelet-Galerkin method. This equation is solved first and its solution is substituted into the non...

متن کامل

Approximate momentum conservation for spatial semidiscretizations of semilinear wave equations

We prove that a standard second order finite difference uniform space discretization of the semilinear wave equation with periodic boundary conditions, analytic nonlinearity, and analytic initial data conserves momentum up to an error which is exponentially small in the stepsize. Our estimates are valid for as long as the trajectories of the full semilinear wave equation remain real analytic. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017