Collective Behaviour without Collective Order in Wild Swarms of Midges
نویسندگان
چکیده
Collective behaviour is a widespread phenomenon in biology, cutting through a huge span of scales, from cell colonies up to bird flocks and fish schools. The most prominent trait of collective behaviour is the emergence of global order: individuals synchronize their states, giving the stunning impression that the group behaves as one. In many biological systems, though, it is unclear whether global order is present. A paradigmatic case is that of insect swarms, whose erratic movements seem to suggest that group formation is a mere epiphenomenon of the independent interaction of each individual with an external landmark. In these cases, whether or not the group behaves truly collectively is debated. Here, we experimentally study swarms of midges in the field and measure how much the change of direction of one midge affects that of other individuals. We discover that, despite the lack of collective order, swarms display very strong correlations, totally incompatible with models of non-interacting particles. We find that correlation increases sharply with the swarm's density, indicating that the interaction between midges is based on a metric perception mechanism. By means of numerical simulations we demonstrate that such growing correlation is typical of a system close to an ordering transition. Our findings suggest that correlation, rather than order, is the true hallmark of collective behaviour in biological systems.
منابع مشابه
Determining asymptotically large population sizes in insect swarms.
Social animals commonly form aggregates that exhibit emergent collective behaviour, with group dynamics that are distinct from the behaviour of individuals. Simple models can qualitatively reproduce such behaviour, but only with large numbers of individuals. But how rapidly do the collective properties of animal aggregations in nature emerge with group size? Here, we study swarms of Chironomus ...
متن کاملSimulating Flying Insects Using Dynamics and Data-Driven Noise Modeling to Generate Diverse Collective Behaviors
We present a biologically plausible dynamics model to simulate swarms of flying insects. Our formulation, which is based on biological conclusions and experimental observations, is designed to simulate large insect swarms of varying densities. We use a force-based model that captures different interactions between the insects and the environment and computes collision-free trajectories for each...
متن کاملSearching for effective forces in laboratory insect swarms
Collective animal behaviour is often modeled by systems of agents that interact via effective social forces, including short-range repulsion and long-range attraction. We search for evidence of such effective forces by studying laboratory swarms of the flying midge Chironomus riparius. Using multi-camera stereoimaging and particle-tracking techniques, we record three-dimensional trajectories fo...
متن کاملFinite-size scaling as a way to probe near-criticality in natural swarms.
Collective behavior in biological systems is often accompanied by strong correlations. The question has therefore arisen of whether correlation is amplified by the vicinity to some critical point in the parameters space. Biological systems, though, are typically quite far from the thermodynamic limit, so that the value of the control parameter at which correlation and susceptibility peak depend...
متن کاملChallenges for Quantitative Analysis of Collective Adaptive Systems
We are surrounded by both natural and engineered collective systems. Such systems include many entities, which interact locally and, without necessarily having any global knowledge, nevertheless work together to create a system with discernible characteristics at the global level; a phenomenon sometimes termed emergence. Examples include swarms of bees, flocks of birds, spread of disease throug...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2014