Sublinear Scalar Multiplication on Hyperelliptic Koblitz Curves

نویسندگان

  • Hugo Labrande
  • Michael J. Jacobson
چکیده

Recently, Dimitrov et. al. [4] proposed a novel algorithm for scalar multiplication of points on elliptic Koblitz curves that requires a provably sublinear number of point additions in the size of the scalar. Following some ideas used by this article, most notably double-base expansions for integers, we generalize their methods to hyperelliptic Koblitz curves of arbitrary genus over any nite eld, obtaining a scalar multiplication algorithm requiring a sublinear number of divisor additions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some properties of $τ$-adic expansions on hyperelliptic Koblitz curves

This paper explores two techniques on a family of hyperelliptic curves that have been proposed to accelerate computation of scalar multiplication for hyperelliptic curve cryptosystems. In elliptic curve cryptosystems, it is known that Koblitz curves admit fast scalar multiplication, namely, the τ -adic non-adjacent form (τ -NAF). It is shown that the τ -NAF has the three properties: (1) existen...

متن کامل

Speeding up the Scalar Multiplication in the Jacobians of Hyperelliptic Curves Using Frobenius Map

In [8] Koblitz suggested to make use of a Frobenius expansion to speed up the scalar multiplications in the Jacobians of hyperelliptic curves over the characteristic 2 field. Recently, Günther et. al.[6] have modified Koblitz’s Frobenius expansion method and applied it to the Koblitz curves of genus 2 over F2 to speed up the scalar multiplication. In this paper, we show that the method given in...

متن کامل

Speeding Up Point Multiplication on Hyperelliptic Curves with Efficiently-Computable Endomorphisms

As Koblitz curves were generalized to hyperelliptic Koblitz curves for faster point multiplication by Günter,et al [10], we extend the recent work of Gallant,et al [8] to hyperelliptic curves. So the extended method for speeding point multiplication applies to a much larger family of hyperelliptic curves over finite fields that have efficiently-computable endomorphisms. For this special family ...

متن کامل

FPGA Implementation of Point Multiplication on Koblitz Curves Using Kleinian Integers

We describe algorithms for point multiplication on Koblitz curves using multiple-base expansions of the form k = ∑ ±τ(τ − 1) and k = ∑ ±τ(τ −1)(τ− τ −1). We prove that the number of terms in the second type is sublinear in the bit length of k, which leads to the first provably sublinear point multiplication algorithm on Koblitz curves. For the first type, we conjecture that the number of terms ...

متن کامل

Speeding up the Arithmetic on Koblitz Curves of Genus Two

Koblitz, Solinas, and others investigated a family of elliptic curves which admit especially fast elliptic scalar multiplication. They considered elliptic curves deened over the nite eld F 2 with base eld F 2 n. In this paper, we generalize their ideas to hyperelliptic curves of genus 2. Given the two hyperelliptic curves C a : v 2 +uv = u 5 + a u 2 + 1 with a = 0; 1, we show how to speed up th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011