Shape Sensitivity Analysis in Flow Models Using a Finite-Difference Approach
نویسندگان
چکیده
Reduced-order models have a number of practical engineering applications for unsteady flows that require either low-dimensional approximations for analysis and control or repeated simulation over a range of parameter values. The standard method for building reduced-order models uses the proper orthogonal decomposition POD and Galerkin projection. However, this standard method may be inaccurate when used “off-design” at parameter values not used to generate the POD . This phenomena is exaggerated when parameter values describe the shape of the flow domain since slight changes in shape can have a significant influence on the flow field. In this paper, we investigate the use of POD sensitivity vectors to improve the accuracy and dynamical system properties of the reduced-order models to problems with shape parameters. To carry out this study, we consider flows past an elliptic cylinder with varying thickness ratios. Shape sensitivities derivatives of flow variables with respect to thickness ratio computed by finitedifference approximations are used to compute the POD sensitivity vectors. Numerical studies test the accuracy of the new bases to represent flow solutions over a range of parameter values.
منابع مشابه
ISOGEOMETRIC TOPOLOGY OPTIMIZATION OF STRUCTURES USING LEVEL SET METHOD INCORPORATING SENSITIVITY ANALYSIS
This study focuses on the topology optimization of structures using a hybrid of level set method (LSM) incorporating sensitivity analysis and isogeometric analysis (IGA). First, the topology optimization problem is formulated using the LSM based on the shape gradient. The shape gradient easily handles boundary propagation with topological changes. In the LSM, the topological gradient method as ...
متن کاملDesign Sensitivity Analysis for Shape Optimization based on the Lie Derivative
The paper presents a theoretical framework for the shape sensitivity analysis of systems governed by partial differential equations. The proposed approach, based on geometrical concepts borrowed from differential geometry, shows that sensitivity of a performance function (i.e. any function of the solution of the problem) with respect to a given design variable can be represented mathematically ...
متن کاملApplying a full implicit finite-difference method in jet impingement heat transfer studies
Jet impingement heat transfer is an effective and practical approach that is employed in many industrial processes where heating, cooling, or drying is required. Details of the heat or mass transfer rate have been investigated both experimentally and numerically and can be found in the published literature. In most of the numerical studies, control-volume approach has been employed to solve the...
متن کاملInvestigation of Utilizing a Secant Stiffness Matrix for 2D Nonlinear Shape Optimization and Sensitivity Analysis
In this article the general non-symmetric parametric form of the incremental secant stiffness matrix for nonlinear analysis of solids have been investigated to present a semi analytical sensitivity analysis approach for geometric nonlinear shape optimization. To approach this aim the analytical formulas of secant stiffness matrix are presented. The models were validated and used to perform inve...
متن کاملCorrecting the stress-strain curve in hot compression test using finite element analysis and Taguchi method
In the hot compression test friction has a detrimental influence on the flow stress through the process and therefore, correcting the deformation curve for real behavior is very important for both researchers and engineers. In this study, a series of compression tests were simulated using Abaqus software. In this study, it has been employed the Taguchi method to design experiments by the factor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010