Vanishing Theorems on Covering Manifolds
نویسنده
چکیده
Let M be an oriented even-dimensional Riemannian manifold on which a discrete group Γ of orientation-preserving isometries acts freely, so that the quotientX = M/Γ is compact. We prove a vanishing theorem for a half-kernel of a Γ-invariant Dirac operator on a Γ-equivariant Clifford module overM , twisted by a sufficiently large power of a Γ-equivariant line bundle, whose curvature is non-degenerate at any point of M . This generalizes our previous vanishing theorems for Dirac operators on a compact manifold. In particular, if M is an almost complex manifold we prove a vanishing theorem for the halfkernel of a spin Dirac operator, twisted by a line bundle with curvature of a mixed sign. In this case we also relax the assumption of non-degeneracy of the curvature. When M is a complex manifold our results imply analogues of Kodaira and Andreotti-Grauert vanishing theorems for covering manifolds. As another application, we show that semiclassically the spin quantization of an almost complex covering manifold gives an “honest” Hilbert space. This generalizes a result of Borthwick and Uribe, who considered quantization of compact manifolds. Application of our results to homogeneous manifolds of a real semisimple Lie group leads to new proofs of Griffiths-Schmidt and Atiyah-Schmidt vanishing theorems.
منابع مشابه
Vanishing Theorems on Complete K Ahler Manifolds and Their Applications
Semi-positive line bundles over compact Kahler manifolds have been the focus of studies for decades. Among them, there are several straddling vanishing theorems such as the Kodaira-Nakano Vanishing Theorem, Vesentini-Gigante-Girbau Vanishing Theorems and KawamataViehweg Vanishing Theorem. As a corollary of the above mentioned vanishing theorems one can easily show that a line bundle over compa...
متن کاملVanishing theorems on Hermitian manifolds
We prove the vanishing of the Dolbeault cohomology groups on Hermitian manifolds with ddc-harmonic Kähler form and positive (1, 1)-part of the Ricci form of the Bismut connection. This implies the vanishing of the Dolbeault cohomology groups on complex surfaces which admit a conformal class of Hermitian metrics, such that the Ricci tensor of the canonical Weyl structure is positive. As a coroll...
متن کاملHodge modules on complex tori and generic vanishing for compact Kähler manifolds
The term “generic vanishing” refers to a collection of theorems about the cohomology of line bundles with trivial first Chern class. The first results of this type were obtained by Green and Lazarsfeld in the late 1980s [13, 14]; they were proved using classical Hodge theory and are therefore valid on arbitrary compact Kähler manifolds. About ten years ago, Hacon [15] found a more algebraic app...
متن کاملVanishing theorems for locally conformal hyperkähler manifolds
Let M be a compact locally conformal hyperkähler manifold. We prove a version of Kodaira-Nakano vanishing theorem for M . This is used to show that M admits no holomorphic differential forms, and the cohomology of the structure sheaf H(OM ) vanishes for i > 1. We also prove that the first Betti number of M is 1. This leads to a structure theorem for locally conformally hyperkähler manifolds, de...
متن کاملTopological Obstructions to Certain Lie Group Actions on Manifolds
Given a smooth closed S1-manifold M , this article studies the extent to which certain numbers of the form (f∗ (x) · P · C) [M ] are determined by the fixed-point set MS 1 , where f : M → K (π1 (M) , 1) classifies the universal cover of M , x ∈ H∗ (π1 (M) ;Q), P is a polynomial in the Pontrjagin classes of M , and C is in the subalgebra of H∗ (M ;Q) generated by H2 (M ;Q). When MS 1 = ∅, variou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999