Current saturation in submicrometer graphene transistors with thin gate dielectric: experiment, simulation, and theory.
نویسندگان
چکیده
Recently, graphene field-effect transistors (FET) with cutoff frequencies (f(T)) between 100 and 300 GHz have been reported; however, the devices showed very weak drain current saturation, leading to an undesirably high output conductance (g(ds)= dI(ds)/dV(ds)). A crucial figure-of-merit for analog/RF transistors is the intrinsic voltage gain (g(m)/g(ds)) which requires both high g(m) (primary component of f(T)) and low g(ds). Obtaining current saturation has become one of the key challenges in graphene device design. In this work, we study theoretically the influence of the dielectric thickness on the output characteristics of graphene FETs by using a surface-potential-based device model. We also experimentally demonstrate that by employing a very thin gate dielectric (equivalent oxide thickness less than 2 nm), full drain current saturation can be obtained for large-scale chemical vapor deposition graphene FETs with short channels. In addition to showing intrinsic voltage gain (as high as 34) that is comparable to commercial semiconductor FETs with bandgaps, we also demonstrate high frequency AC voltage gain and S21 power gain from s-parameter measurements.
منابع مشابه
Organic Thin Film Transistors with Polyvinylpyrrolidone / Nickel Oxide Sol-Gel Derived Nanocomposite Insulator
Polyvinylpyrrolidone / Nickel oxide (PVP/NiO) dielectrics were fabricated with sol-gel method using 0.2 g of PVP at different working temperatures of 80, 150 and 200 ºC. Structural properties and surface morphology of the hybrid films were investigated by X- Ray diffraction (XRD) and Scanning Electron Microscope (SEM) respectively. Energy dispersive X-ray spec...
متن کاملProbing transconductance spatial variations in graphene nanoribbon field- effect transistors using scanning gate microscopy
Related Articles The influence of gate dielectrics on a high-mobility n-type conjugated polymer in organic thin-film transistors APL: Org. Electron. Photonics 5, 21 (2012) Graphene-protein bioelectronic devices with wavelength-dependent photoresponse Appl. Phys. Lett. 100, 033110 (2012) Model of random telegraph noise in gate-induced drain leakage current of high-k gate dielectric metal-oxidese...
متن کاملTheoretical study of the source-drain current and gate leakage current to understand the graphene field-effect transistors.
We designed acene molecules attached to two semi-infinite metallic electrodes to explore the source-drain current of graphene and the gate leakage current of the gate dielectric material in the field-effect transistors (FETs) device using the first-principles density functional theory combined with the non-equilibrium Green's function formalism. In the acene-based molecular junctions, we modify...
متن کاملA Computational Study on the Performance of Graphene Nanoribbon Field Effect Transistor
Despite the simplicity of the hexagonal graphene structure formed by carbon atoms, the electronic behavior shows fascinating properties, giving high expectation for the possible applications of graphene in the field. The Graphene Nano-Ribbon Field Effect Transistor (GNRFET) is an emerging technology that received much attention in recent years. In this paper, we investigate the device performan...
متن کاملSub-10 nm Gate Length Graphene Transistors: Operating at Terahertz Frequencies with Current Saturation
Radio-frequency application of graphene transistors is attracting much recent attention due to the high carrier mobility of graphene. The measured intrinsic cut-off frequency (f(T)) of graphene transistor generally increases with the reduced gate length (L(gate)) till L(gate) = 40 nm, and the maximum measured f(T) has reached 300 GHz. Using ab initio quantum transport simulation, we reveal fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- ACS nano
دوره 6 6 شماره
صفحات -
تاریخ انتشار 2012