Lipocortin I is not accessible for protein kinase C bound to the cytoplasmic surface of the plasma membrane in streptolysin-O-permeabilized pig granulocytes.

نویسندگان

  • G Farkas
  • L Buday
  • P Csermely
  • A Faragó
چکیده

We previously observed a 38 kDa protein that was a major protein component of the cytosolic extract of pig granulocytes and the dominant substrate of protein kinase C at supra-physiological Ca2+ concentrations. The purified 38 kDa protein itself required Ca2+ to be phosphorylated by protein kinase C. Now we demonstrate that this protein, which is also present in human granulocytes, is identical to lipocortin I. The identification is based on the chromatographic properties and immunoblot of the purified protein which is also a good substrate for tissue transglutaminase. Phosphorylation of lipocortin I by protein kinase C was investigated in granulocytes permeabilized with streptolysin-O. At physiological intracellular Ca2+ concentrations lipocortin I was not phosphorylated at all. At supra-physiological Ca2+ concentrations (0.5 mM), lipocortin I was also not phosphorylated when protein kinase C was translocated to the membrane by treatment of the cells with phorbol myristate acetate. Its phosphorylation was detectable only in control experiments when protein kinase C was activated in the cytosol by the addition of dioleoylglycerol and phosphatidylserine to the permeabilized cells. The data presented show that, in permeabilized granulocytes, Ca(2+)-lipocortin is not formed at physiological Ca2+ concentrations, and at supra-physiological Ca2+ concentrations the Ca(2+)-lipocortin I is not accessible to protein kinase C bound to the cytoplasmic surface of the plasma membrane.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activated release of membrane-anchored TGF-alpha in the absence of cytosol

The ectodomain of proTGF-alpha, a membrane-anchored growth factor, is converted into soluble TGF-alpha by a regulated cellular proteolytic system that recognizes proTGF-alpha via the C-terminal valine of its cytoplasmic tail. In order to define the biochemical components involved in proTGF-alpha cleavage, we have used cells permeabilized with streptolysin O (SLO) that have been extensively wash...

متن کامل

Protein sorting in Plasmodium falciparum-infected red blood cells permeabilized with the pore-forming protein streptolysin O.

Plasmodium falciparum is an intracellular parasite of human red blood cells (RBCs). Like many other intracellular parasites, P. falciparum resides and develops within a parasitophorous vacuole which is bound by a membrane that separates the host cell cytoplasm from the parasite surface. Some parasite proteins are secreted into the vacuolar space and others are secreted, by an as yet poorly defi...

متن کامل

Inhibition of insulin-stimulated phosphorylation of the intracellular domain of phospholemman decreases insulin-dependent GLUT4 translocation in streptolysin-O-permeabilized adipocytes.

A variety of studies indicate that protein kinase C might be involved in the insulin signalling cascade leading to translocation of the insulin-regulated glucose transporter GLUT4 from intracellular pools to the plasma membrane. Phospholemman is a plasma-membrane protein kinase C substrate whose phosphorylation is increased by insulin in intact muscle [Walaas, Czernik, Olstad, Sletten and Walaa...

متن کامل

Transport of influenza HA from the trans-Golgi network to the apical surface of MDCK cells permeabilized in their basolateral plasma membranes: energy dependence and involvement of GTP-binding proteins

A procedure employing streptolysin O to effect the selective permeabilization of either the apical or basolateral plasma membrane domains of MDCK cell monolayers grown on a filter support was developed which permeabilizes the entire monolayer, leaves the opposite cell surface domain intact, and does not abolish the integrity of the tight junctions. This procedure renders the cell interior acces...

متن کامل

Reprogramming by cytosolic extract of human embryonic stem cells improves dopaminergic differentiation potential of human adipose tissue-derived stem cells

The extract of pluripotent stem cells induces dedifferentiation of somatic cells with restricted plasticity. In this study, we used the extract of human embryonic stem cells (hESC) to dedifferentiate adipose tissue-derived stem cells (ADSCs) and examined the impact of this reprogramming event on dopaminergic differentiation of the cells. For this purpose, cytoplasmic extract of ESCs was prepare...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochimica et biophysica acta

دوره 1220 3  شماره 

صفحات  -

تاریخ انتشار 1994