A novel anonymization algorithm: Privacy protection and knowledge preservation

نویسندگان

  • Weijia Yang
  • Sanzheng Qiao
چکیده

In data mining and knowledge discovery, there are two conflicting goals: privacy protection and knowledge preservation. On the one hand, we anonymize data to protect privacy; on the other hand, we allow miners to discover useful knowledge from anonymized data. In this paper, we present an anonymization method which provides both privacy protection and knowledge preservation. Unlike most anonymization methods, where data are generalized or permuted, our method anonymizes data by randomly breaking links among attribute values in records. By data randomization, our method maintains statistical relations among data to preserve knowledge, whereas in most anonymization methods, knowledge is lost. Thus the data anonymized by our method maintains useful knowledge for statistical study. Furthermore, we propose an enhanced algorithm for extra privacy protection to tackle the situation where the user’s prior knowledge of original data may cause privacy leakage. The privacy levels and the accuracy of knowledge preservation of our method, along with their relations to the parameters in the method are analyzed. Experiment results demonstrate that our method is effective on both privacy protection and knowledge preservation comparing with existing methods. 2009 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Social Network De-Anonymization and Privacy Inference with Knowledge Graph Model

Social network data is widely shared, transferred and published for research purposes and business interests, but it has raised much concern on users’ privacy. Even though users’ identity information is always removed, attackers can still de-anonymize users with the help of auxiliary information. To protect against de-anonymization attack, various privacy protection techniques for social networ...

متن کامل

Privacy Preservation by Disassociation

In this work, we focus on protection against identity disclosure in the publication of sparse multidimensional data. Existing multidimensional anonymization techniques (a) protect the privacy of users either by altering the set of quasi-identifiers of the original data (e.g., by generalization or suppression) or by adding noise (e.g., using differential privacy) and/or (b) assume a clear distin...

متن کامل

Access Control Mechanism of Accuracy-Constrained Privacy- Preserving for Relational Data

Access control mechanisms protect sensitive information from unauthorized users. However, when sensitive information is shared and a Privacy Protection Mechanism (PPM) is not in place, an authorized user can still compromise the privacy of a person leading to identity disclosure. A PPM can use suppression and generalization of relational data to anonymize and satisfy privacy requirements, e.g.,...

متن کامل

Gain Ratio Based Feature Selection Method for Privacy Preservation

Privacy-preservation is a step in data mining that tries to safeguard sensitive information from unsanctioned disclosure and hence protecting individual data records and their privacy. There are various privacy preservation techniques like k-anonymity, l-diversity and t-closeness and data perturbation. In this paper k-anonymity privacy protection technique is applied to high dimensional dataset...

متن کامل

Enhanced Algorithm for Data Privacy Preservation using Data Anonymization with Low Information Loss in Public cloud

Data are scattered in public cloud to share among the stake holders which produces much concern over the protection of individual privacy. Without revealing the delicate information, publishing data in a public cloud is a challenging aspect. To reveal data to the public leads to the introduction of many models like kanonymity and l-diversity. These methods safeguard the data against the adversa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2010