On the canonically invariant calculation of Maslov indices
نویسنده
چکیده
After a short review of various ways to calculate the Maslov index appearing in semiclassical Gutzwiller type trace formulae, we discuss a coordinate-independent and canonically invariant formulation recently proposed by A Sugita (2000, 2001). We give explicit formulae for its ingredients and test them numerically for periodic orbits in several Hamiltonian systems with mixed dynamics. We demonstrate how the Maslov indices and their ingredients can be useful in the classification of periodic orbits in complicated bifurcation scenarios, for instance in a novel sequence of seven orbits born out of a tangent bifurcation in the Hénon-Heiles system.
منابع مشابه
0 M ay 2 00 3 On the canonically invariant calculation of Maslov indices
After a short review of various ways to calculate the Maslov index appearing in semiclassical Gutzwiller type trace formulae, we discuss a coordinate-independent and canonically invariant formulation recently proposed by A Sugita (2000, 2001). We give explicit formulae for its ingredients and test them numerically for periodic orbits in several Hamiltonian systems with mixed dynamics. We demons...
متن کاملGeometrical properties of Maslov indices in periodic-orbit theory
Maslov indices in periodic-orbit theory are investigated using phase space path integral. Based on the observation that the Maslov index is the multi-valued function of the monodromy matrix, we introduce a generalized monodromy matrix in the universal covering space of the symplectic group and show that this index is uniquely determined in this space. The stability of the orbit is shown to dete...
متن کاملInvariant measures of Hamiltonian systems with prescribed asymptotic Maslov index
We study the properties of the asymptotic Maslov index of invariant measures for timeperiodic Hamiltonian systems on the cotangent bundle of a compact manifold M . We show that if M has finite fundamental group and the Hamiltonian satisfies some general growth assumptions on the momenta, the asymptotic Maslov indices of periodic orbits are dense in the half line [0,+∞). Furthermore, if the Hami...
متن کاملM ar 2 00 7 A topological theory of Maslov indices for Lagrangian and symplectic paths
We propose a topological theory of the Maslov index for lagrangian and symplectic paths based on a minimal system of axioms. We recover , as particular cases, the Hörmander and the Robbin–Salomon indices.
متن کاملThe Morse and Maslov indices for matrix Hill’s equations
For Hill’s equations with matrix valued periodic potential, we discuss relations between the Morse index, counting the number of unstable eigenvalues, and the Maslov index, counting the number of signed intersections of a path in the space of Lagrangian planes with a fixed plane. We adapt to the one dimensional periodic setting the strategy of a recent paper by J. Deng and C. Jones relating the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003