On Farthest-Site Voronoi Diagrams of Line Segments and Lines in Three and Higher Dimensions∗
نویسندگان
چکیده
We show that the number of 3-dimensional cells in the farthest-site Voronoi diagram of n segments (or lines) in R is Θ(n) in the worst case, and that the diagram can be computed in O(k log n) time, where k is the complexity of the diagram, using O(k) space. In R, the number of d-dimensional cells in the diagram is Θ(nd−1) in the worst case.
منابع مشابه
Farthest - Site Voronoi Diagrams of Line Segments and Lines in Three and Higher Dimensions ∗
We show that the complexity of the farthest-site Voronoi diagram of n segments (or lines) in R is Θ(n) in the worst case, and it can be computed in O(n log n) time, using O(n) space. In R, the complexity of the diagram is Θ(nd−1) in the worst case.
متن کاملVoronoi Diagram for Convex Polygonal Sites with Convex Polygon-Offset Distance Function
The concept of convex polygon-offset distance function was introduced in 2001 by Barequet, Dickerson, and Goodrich. Using this notion of point-to-point distance, they showed how to compute the corresponding nearestand farthest-site Voronoi diagram for a set of points. In this paper we generalize the polygon-offset distance function to be from a point to any convex object with respect to an m-si...
متن کاملFarthest line segment Voronoi diagrams
The farthest line segment Voronoi diagram shows properties different from both the closest-segment Voronoi diagram and the farthest-point Voronoi diagram. Surprisingly, this structure did not receive attention in the computational geometry literature. We analyze its combinatorial and topological properties and outline an O(n log n) time construction algorithm that is easy to implement. No restr...
متن کاملHigher Order City Voronoi Diagrams
We investigate higher-order Voronoi diagrams in the city metric. This metric is induced by quickest paths in the L1 metric in the presence of an accelerating transportation network of axis-parallel line segments. For the structural complexity of k-order city Voronoi diagrams of n point sites, we show an upper bound of O(k(n − k) + kc) and a lower bound of Ω(n+ kc), where c is the complexity of ...
متن کاملNew Results on Abstract Voronoi Diagrams
Voronoi diagrams are a fundamental structure used in many areas of science. For a given set of objects, called sites, the Voronoi diagram separates the plane into regions, such that points belonging to the same region have got the same nearest site. This definition clearly depends on the type of given objects, they may be points, line segments, polygons, etc. and the distance measure used. To f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014