Highly accurate wavefront reconstruction algorithms over broad spatial-frequency bandwidth.
نویسنده
چکیده
New algorithms for reconstructing wavefront from slopes data are developed, which exhibit high accuracy over broad spatial-frequency bandwidth. Analyzing wavefront reconstructors in the frequency domain lends new insight into ways to improve frequency response and to understand noise propagation. The mathematical tools required to analyze the frequency domain are first developed for discrete band-limited signals. These tools are shown to improve frequency response in either spatial-or frequency-domain reconstruction algorithms. A new spatial-domain iterative reconstruction algorithm based on the Simpson rule is presented. The local phase estimate is averaged over 8 neighboring points whereas the traditional reconstructors use 4 points. Analytic results and numerical simulations show that the Simpson-rule-based reconstructor provides high accuracy up to 85% of the bandwidth. The previously developed rectangular-geometry band-limited algorithm in frequency domain is adapted to hexagonal geometry, which adds flexibility when applying frequency-domain algorithms. Finally, a generalized analytic expression for error propagation coefficient is found for different reconstructors and compared with numerical simulations.
منابع مشابه
An Adaptive Self-adjusting Bandwidth Bandpass Filter without IIR Bias
In this paper we introduce a simple, computationally inxepentsive, adaptive recursive structure for enhancing bandpass signals highly corrupted by broad-band noise. This adaptive algorithm, enhancing input signals, enables us to estimate the center frequency and the bandwidth of the input signal. In addition, an important feature of the proposed structure is that the conventional bias existing ...
متن کاملFrequency analysis of the wavefront-coding odd-symmetric quadratic phase mask.
A mathematical analysis of the frequency response of the wavefront-coding odd-symmetric quadratic phase mask is presented. An exact solution for the optical transfer function of a wavefront-coding imager using this type of mask is derived from first principles, whose result applies over all misfocus values. The misfocus-dependent spatial filtering property of this imager is described. The avail...
متن کاملAn Adaptive Self-adjusting Bandwidth Bandpass Filter without IIR Bias
In this paper we introduce a simple, computationally inxepentsive, adaptive recursive structure for enhancing bandpass signals highly corrupted by broad-band noise. This adaptive algorithm, enhancing input signals, enables us to estimate the center frequency and the bandwidth of the input signal. In addition, an important feature of the proposed structure is that the conventional bias existing ...
متن کاملDispersionless Manipulation of Reflected Acoustic Wavefront by Subwavelength Corrugated Surface
Free controls of optic/acoustic waves for bending, focusing or steering the energy of wavefronts are highly desirable in many practical scenarios. However, the dispersive nature of the existing metamaterials/metasurfaces for wavefront manipulation necessarily results in limited bandwidth. Here, we propose the concept of dispersionless wavefront manipulation and report a theoretical, numerical a...
متن کاملFocal Plane and non-linear Curvature Wavefront Sensing for High Contrast Coronagraphic Adaptive Optics Imaging
Wavefronts can be accurately estimated directly from either focal plane images or defocused pupil plane images, in schemes similar to phase diversity. These wavefront sensing techniques offers fundamental advantages over more traditional techniques for high contrast Adaptive Optics. When combined with a high performance coronagraph, these techniques enable efficient detection of exoplanets. 1. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Optics express
دوره 19 20 شماره
صفحات -
تاریخ انتشار 2011