3D Controlled Motion of a Microrobot using Magnetic Gradients

نویسندگان

  • Karim Belharet
  • David Folio
  • Antoine Ferreira
چکیده

This paper presents an endovascular navigation of a ferromagnetic microdevice using MRI-based predictive control. The concept was studied for future development of microrobot designed to perform minimally invasive interventions in remote sites accessible through the human cardiovascular system. A system software architecture is presented illustrating the different software modules to allow 3D navigation of a microdevice in blood vessels, namely: (i) vessel path extraction, (ii) magnetic gradient steering, (iii) tracking and (iv) closed-loop navigation control. First, the navigation path of the microrobot into the blood vessel is extracted using Fast Marching Method from the pre-operation images (3D MRI imaging) to guide the microrobot from the injection point to the tumor area through the anarchic vessel network. Based on the pre-computed path, a Model Predictive Controller is proposed for robust time-multiplexed navigation along a 3D path in presence of pulsative flow. The simulation results suggest the validation of the proposed image processing and control algorithms. keywords: Microrobot, gradient controlled motion, endovascular navigation

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication and Manipulation of Ciliary Microrobots with Non-reciprocal Magnetic Actuation

Magnetically actuated ciliary microrobots were designed, fabricated, and manipulated to mimic cilia-based microorganisms such as paramecia. Full three-dimensional (3D) microrobot structures were fabricated using 3D laser lithography to form a polymer base structure. A nickel/titanium bilayer was sputtered onto the cilia part of the microrobot to ensure magnetic actuation and biocompatibility. T...

متن کامل

Three-Dimensional Controlled Motion of a Microrobot using Magnetic Gradients

This paper presents the endovascular navigation of a ferromagnetic microdevice using magnetic resonance imaging (MRI)-based predictive control. The concept was studied for the future development of microrobots designed to perform minimally invasive interventions in remote sites accessible through the human cardiovascular system. A system software architecture is presented illustrating the diffe...

متن کامل

Manipulating Microrobots Using Balanced Magnetic and Buoyancy Forces

We present a novel method for the three-dimensional (3D) control of microrobots within a microfluidic chip. The microrobot body contains a hollow space, producing buoyancy that allows it to float in a microfluidic environment. The robot moves in the z direction by balancing magnetic and buoyancy forces. In coordination with the motion of stages in the xy plane, we achieved 3D microrobot control...

متن کامل

A Scalable Strategy for Open Loop Magnetic Control of Microrobots Using Critical Points

A novel scalable strategy for open loop control of ferromagnetic microrobots on a plane using a scalable array of electromagnets is presented. Instead of controlling the microrobot directly, we create equilibrium points in the magnetic force field that are stable and attractive on the plane in which the microrobot is to be controlled. The microrobot moves into these equilibrium points rapidly i...

متن کامل

Independent control of multiple magnetic microrobots in three dimensions

A major challenge for untethered micro-scale mobile robotics is the control of many agents in the same workspace for distributed operation. In this work, we present a new method to independently control multiple sub-mm microrobots in three dimensions (3D) using magnetic gradient pulling as the 3D motion generation method. Motion differentiation is accomplished through the use of geometrically o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012