Life Distribution Analysis Based on Lévy Subordinators for Degradation with Random Jumps
نویسندگان
چکیده
For a component or a system subject to stochastic degradation with sporadic jumps that occur at random times and have random sizes, we propose to model the cumulative degradation with random jumps using a single stochastic process based on the characteristics of Lévy subordinators, the class of non-decreasing Lévy processes. Based on an inverse Fourier transform, we derive a new closed-form reliability function and probability density function for lifetime, represented by Lévy measures. The reliability function derived using the traditional convolution approach for common stochastic models such as gamma degradation process with random jumps, is revealed to be a special case of our general model. Numerical experiments are used to demonstrate that our model performs well for different applications, when compared with the traditional convolution method. More importantly, it is a general and useful tool for life distribution analysis of stochastic degradation with random jumps in multi-dimensional cases.
منابع مشابه
Subordinators, Lévy processes with no negative jumps, and branching processes
The purpose of this course is to present some simple relations connecting subordinators, Lévy processes with no negative jumps, and continuous state branching processes. To start with, we develop the main ingredients on subordinators (the LévyKhintchine formula, the Lévy-Itô decomposition, the law of the iterated logarithm, the renewal theory for the range, and the link with local times of Mark...
متن کاملCovariation representations for Hermitian Lévy process ensembles of free infinitely divisible distributions
It is known that the so-called Bercovici-Pata bijection can be explained in terms of certain Hermitian random matrix ensembles (Md)d≥1 whose asymptotic spectral distributions are free infinitely divisible. We investigate Hermitian Lévy processes with jumps of rank one associated to these random matrix ensembles introduced in [6] and [10]. A sample path approximation by covariation processes for...
متن کاملCorrelation Structure of Time-Changed Lévy Processes
Time-changed Lévy processes include the fractional Poisson process, and the scaling limit of a continuous time random walk. They are obtained by replacing the deterministic time variable by a positive non-decreasing random process. The use of time-changed processes in modeling often requires the knowledge of their second order properties such as the correlation function. This paper provides the...
متن کاملWiener–hopf Factorization for Lévy Processes Having Positive Jumps with Rational Transforms
We show that the positive Wiener–Hopf factor of a Lévy process with positive jumps having a rational Fourier transform is a rational function itself, expressed in terms of the parameters of the jump distribution and the roots of an associated equation. Based on this, we give the closed form of the ruin probability for a Lévy process, with completely arbitrary negatively distributed jumps, and f...
متن کاملWiener-Hopf factorization for Lévy processes having negative jumps with rational transforms
We give the closed form of the ruin probability for a Lévy processes, possibly killed at a constant rate, with completely arbitrary positive distributed jumps, and finite intensity negative jumps with distribution characterized by having a rational Laplace or Fourier transform. Abbreviated Title: WH-factors of Lévy processes with rational jumps.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014