The distributed human neural system for face perception.
نویسندگان
چکیده
Face perception, perhaps the most highly developed visual skill in humans, is mediated by a distributed neural system in humans that is comprised of multiple, bilateral regions. We propose a model for the organization of this system that emphasizes a distinction between the representation of invariant and changeable aspects of faces. The representation of invariant aspects of faces underlies the recognition of individuals, whereas the representation of changeable aspects of faces, such as eye gaze, expression, and lip movement, underlies the perception of information that facilitates social communication. The model is also hierarchical insofar as it is divided into a core system and an extended system. The core system is comprised of occipitotemporal regions in extrastriate visual cortex that mediate the visual analysis of faces. In the core system, the representation of invariant aspects is mediated more by the face-responsive region in the fusiform gyrus, whereas the representation of changeable aspects is mediated more by the face-responsive region in the superior temporal sulcus. The extended system is comprised of regions from neural systems for other cognitive functions that can be recruited to act in concert with the regions in the core system to extract meaning from faces.
منابع مشابه
Monocular Advantage for Face Perception Implicates Subcortical Mechanisms in Adult Humans
The ability to recognize faces accurately and rapidly is an evolutionarily adaptive process. Most studies examining the neural correlates of face perception in adult humans have focused on a distributed cortical network of face-selective regions. There is, however, robust evidence from phylogenetic and ontogenetic studies that implicates subcortical structures, and recently, some investigations...
متن کاملHuman neural systems for face recognition and social communication.
Face perception is mediated by a distributed neural system in humans that consists of multiple, bilateral regions. The functional organization of this system embodies a distinction between the representation of invariant aspects of faces, which is the basis for recognizing individuals, and the representation of changeable aspects, such as eye gaze, expression, and lip movement, which underlies ...
متن کاملDifferential modulation of neural activity throughout the distributed neural system for face perception in patients with Social Phobia and healthy subjects.
Social Phobia (SP) is a marked and persistent fear of social or performance situations in which the person is exposed to unfamiliar people or to possible scrutiny by others. Faces of others are perceived as threatening by social phobic patients (SPP). To investigate how face processing is altered in the distributed neural system for face perception in Social Phobia, we designed an event-related...
متن کاملRecognizing moving faces: a psychological and neural synthesis.
Information for identifying a human face can be found both in the invariant structure of features and in idiosyncratic movements and gestures. When both kinds of information are available, psychological evidence indicates that: (1) dynamic information contributes more to recognition under non-optimal viewing conditions, e.g. poor illumination, low image resolution, recognition from a distance; ...
متن کاملDisentangling the Representation of Identity from Head View Along the Human Face Processing Pathway.
Neural models of a distributed system for face perception implicate a network of regions in the ventral visual stream for recognition of identity. Here, we report a functional magnetic resonance imaging (fMRI) neural decoding study in humans that shows that this pathway culminates in the right inferior frontal cortex face area (rIFFA) with a representation of individual identities that has been...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Trends in cognitive sciences
دوره 4 6 شماره
صفحات -
تاریخ انتشار 2000