Comprehensive study of the macropore and mesopore size distributions in polymer monoliths using complementary physical characterization techniques and liquid chromatography.
نویسندگان
چکیده
Poly(styrene-co-divinylbenzene) monolithic stationary phases with two different domain sizes were synthesized by a thermally initiated free-radical copolymerization in capillary columns. The morphology was investigated at the meso- and macroscopic level using complementary physical characterization techniques aiming at better understanding the effect of column structure on separation performance. Varying the porogenic solvent ratio yielded materials with a mode pore size of 200 nm and 1.5 μm, respectively. Subsequently, nano-liquid chromatography experiments were performed on 200 μm id × 200 mm columns using unretained markers, linking structure inhomogeneity to eddy dispersion. Although small-domain-size monoliths feature a relatively narrow macropore-size distribution, their homogeneity is compromised by the presence of a small number of large macropores, which induces a significant eddy-dispersion contribution to band broadening. The small-domain size monolith also has a relatively steep mass-transfer term, compared to a monolith containing larger globules and macropores. Structural inhomogeneity was also studied at the mesoscopic level using gas-adsorption techniques combined with the non-local-density-function-theory. This model allows to accurately determine the mesopore properties in the dry state. The styrene-based monolith with small domain size has a distinctive trimodal mesopore distribution with pores of 5, 15, and 25 nm, whereas the monolith with larger feature sizes only contains mesopores around 5 nm in size.
منابع مشابه
Synthesis and morphological characterization of phenyl-modified macroporous–mesoporous hybrid silica monoliths
Compared with pure silica-based or organic-polymer monoliths, hybrid organic-silica monoliths offer the combined advantages of mechanically strong stationary phases, simpler preparation protocols, resistance to swelling and shrinking in many solvents and better pH stability. Comprehensive data on the systematic characterization of the pore space morphology of hybrid organic-silica monoliths and...
متن کاملSynthesis of hierarchically porous polymethylsilsesquioxane monoliths with controlled mesopores for HPLC separation
Solgel synthesis of macroporous polymethylsilsesquioxane (PMSQ) monoliths has been successful over the past decade, and applications to separation media have been investigated. However, the control of mesopores to tailor hierarchical porosity, which is promising for improvement of the separation efficiency, remains challenging. In particular, an independent control of mesoand macropores has no...
متن کاملLiquid intrusion and alternative methods for the characterization of macroporous materials (IUPAC Technical Report)*
This document deals with the characterization of porous materials having pore widths in the macropore range of 50 nm to 500 μm. In recent years, the development of advanced adsorbents and catalysts (e.g., monoliths having hierarchical pore networks) has brought about a renewed interest in macropore structures. Mercury intrusion–extrusion porosimetry is a well-established method, which is at pre...
متن کاملQuantification of identical and unique segments in ethylene-propylene copolymers using two dimensional liquid chromatography with infra-red detection
Hyphenating High Temperature High Performance Liquid Chromatography (HT-HPLC) with High Temperature Size Exclusion Chromatography (HT-SEC) (High Temperature Two Dimensional Liquid Chromatography (HT-HPLC x HT-SEC or HT 2D-LC)) leads to an isocratic elution in the second dimension, which in turn enables to use IR detector (quantitative detection) for monitoring the eluting polymers. Experimental...
متن کاملHierarchical TiO2/C nanocomposite monoliths with a robust scaffolding architecture, mesopore-macropore network and TiO2-C heterostructure for high-performance lithium ion batteries.
Engineering hierarchical structures of electrode materials is a powerful strategy for optimizing the electrochemical performance of an anode material for lithium-ion batteries (LIBs). Herein, we report the fabrication of hierarchical TiO2/C nanocomposite monoliths by mediated mineralization and carbonization using bacterial cellulose (BC) as a scaffolding template as well as a carbon source. Ti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of separation science
دوره 39 23 شماره
صفحات -
تاریخ انتشار 2016