Hypothesis Testing and Advanced Distinguishers in Differential Cryptanalysis of Block Ciphers
نویسندگان
چکیده
Distinguishing distributions is a major part during cryptanalysis of symmetric block ciphers. The goal of the cryptanalyst is to distinguish two distributions; one that characterizes the number of certain events which occur totally at random and another one that characterizes same type of events but due to propagation inside the cipher. This can be realized as a hypothesis testing problem, where a source is used to generate independent random samples in some given finite set with some distribution P, which is either R or W, corresponding to propagation inside the cipher or a random permutation respectively. Distinguisher’s goal is to determine which one is most likely the one which was used to generate the sample. In this paper, we study a general hypothesis-testing based approach to construct statistical distinguishers using truncated differential properties. The observable variable in our case is the expected number of pairs that follow a certain truncated differential property of the form ΔX → ΔY after a certain number of rounds. As a proof of concept, we apply this methodology to GOST and SIMON64/128 block ciphers and present distinguishers on 20 and 22 rounds respectively.
منابع مشابه
A new method for accelerating impossible differential cryptanalysis and its application on LBlock
Impossible differential cryptanalysis, the extension of differential cryptanalysis, is one of the most efficient attacks against block ciphers. This cryptanalysis method has been applied to most of the block ciphers and has shown significant results. Using structures, key schedule considerations, early abort, and pre-computation are some common methods to reduce complexities of this attack. In ...
متن کاملKnown and Chosen Key Differential Distinguishers for Block Ciphers
In this paper we investigate the differential properties of block ciphers in hash function modes of operation. First we show the impact of differential trails for block ciphers on collision attacks for various hash function constructions based on block ciphers. Further, we prove the lower bound for finding a pair that follows some truncated differential in case of a random permutation. Then we ...
متن کاملImpossible Differential Cryptanalysis of Reduced-Round Midori64 Block Cipher (Extended Version)
Impossible differential attack is a well-known mean to examine robustness of block ciphers. Using impossible differ- ential cryptanalysis, we analyze security of a family of lightweight block ciphers, named Midori, that are designed considering low energy consumption. Midori state size can be either 64 bits for Midori64 or 128 bits for Midori128; however, both vers...
متن کاملStatistical Cryptanalysis of Block Ciphers
Since the development of cryptology in the industrial and academic worlds in the seventies, public knowledge and expertise have grown in a tremendous way, notably because of the increasing, nowadays almost ubiquitous, presence of electronic communication means in our lives. Block ciphers are inevitable building blocks of the security of various electronic systems. Recently, many advances have b...
متن کاملNew Links between Differential and Linear Cryptanalysis
Recently, a number of relations have been established among previously known statistical attacks on block ciphers. Leander showed in 2011 that statistical saturation distinguishers are on average equivalent to multidimensional linear distinguishers. Further relations between these two types of distinguishers and the integral and zero-correlation distinguishers were established by Bogdanov et al...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016