On the Construction of Prime Order Elliptic Curves

نویسندگان

  • Elisavet Konstantinou
  • Yannis C. Stamatiou
  • Christos D. Zaroliagis
چکیده

We consider a variant of the Complex Multiplication (CM) method for constructing elliptic curves (ECs) of prime order with additional security properties. Our variant uses Weber polynomials whose discriminant D is congruent to 3 (mod 8), and is based on a new transformation for converting roots of Weber polynomials to their Hilbert counterparts. We also present a new theoretical estimate of the bit precision required for the construction of the Weber polynomials for these values of D. We conduct a comparative experimental study investigating the time and bit precision of using Weber polynomials against the (typical) use of Hilbert polynomials. We further investigate the time efficiency of the new CM variant under four different implementations of a crucial step of the variant and demonstrate the superiority of two of them.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the rank of certain parametrized elliptic curves

In this paper the family of elliptic curves over Q given by the equation Ep :Y2 = (X - p)3 + X3 + (X + p)3 where p is a prime number, is studied. Itis shown that the maximal rank of the elliptic curves is at most 3 and someconditions under which we have rank(Ep(Q)) = 0 or rank(Ep(Q)) = 1 orrank(Ep(Q))≥2 are given.

متن کامل

Complete characterization of the Mordell-Weil group of some families of elliptic curves

 The Mordell-Weil theorem states that the group of rational points‎ ‎on an elliptic curve over the rational numbers is a finitely‎ ‎generated abelian group‎. ‎In our previous paper, H‎. ‎Daghigh‎, ‎and S‎. ‎Didari‎, On the elliptic curves of the form $ y^2=x^3-3px$‎, ‎‎Bull‎. ‎Iranian Math‎. ‎Soc‎.‎‎ 40 (2014)‎, no‎. ‎5‎, ‎1119--1133‎.‎, ‎using Selmer groups‎, ‎we have shown that for a prime $p...

متن کامل

Families of Fast Elliptic Curves from ℚ-curves

We construct new families of elliptic curves over Fp2 with efficiently computable endomorphisms, which can be used to accelerate elliptic curvebased cryptosystems in the same way as Gallant–Lambert–Vanstone (GLV) and Galbraith–Lin–Scott (GLS) endomorphisms. Our construction is based on reducing Q-curves—curves over quadratic number fields without complex multiplication, but with isogenies to th...

متن کامل

Families of fast elliptic curves from Q-curves

We construct new families of elliptic curves over Fp2 with efficiently computable endomorphisms, which can be used to accelerate elliptic curvebased cryptosystems in the sameway asGallant–Lambert–Vanstone (GLV) and Galbraith–Lin–Scott (GLS) endomorphisms. Our construction is based on reducingQ-curves—curves over quadratic number fields without complex multiplication, butwith isogenies to their ...

متن کامل

Elements of High Order on Finite Fields from Elliptic Curves

We discuss the problem of constructing elements of multiplicative high order in finite fields of large degree over their prime field. We prove that the values on points of order small with respect to their degree of rational functions on an elliptic curve have high order. We discuss several special cases, including an old construction of Wiedemann, giving the first non-trivial estimate for the ...

متن کامل

Introducing Ramanujan’s Class Polynomials in the Generation of Prime Order Elliptic Curves

Complex Multiplication (CM) method is a frequently used method for the generation of prime order elliptic curves (ECs) over a prime field Fp. The most demanding and complex step of this method is the computation of the roots of a special type of class polynomials, called Hilbert polynomials. These polynonials are uniquely determined by the CM discriminant D. The disadvantage of these polynomial...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003