Analysis of Bernstein's Factorization Circuit

نویسندگان

  • Arjen K. Lenstra
  • Adi Shamir
  • Jim Tomlinson
  • Eran Tromer
چکیده

In [1], Bernstein proposed a circuit-based implementation of the matrix step of the number field sieve factorization algorithm. These circuits offer an asymptotic cost reduction under the measure “construction cost × run time”. We evaluate the cost of these circuits, in agreement with [1], but argue that compared to previously known methods these circuits can factor integers that are 1.17 times larger, rather than 3.01 as claimed (and even this, only under the non-standard cost measure). We also propose an improved circuit design based on a new mesh routing algorithm, and show that for factorization of 1024-bit integers the matrix step can, under an optimistic assumption about the matrix size, be completed within a day by a device that costs a few thousand dollars. We conclude that from a practical standpoint, the security of RSA relies exclusively on the hardness of the relation collection step of the

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bernstein's polynomials for convex functions and related results

In this paper we establish several polynomials similar to Bernstein's polynomials and several refinements of  Hermite-Hadamard inequality for convex functions.

متن کامل

$n$-factorization Property of Bilinear Mappings

In this paper, we define a new concept of factorization for a bounded bilinear mapping $f:Xtimes Yto Z$, depended on  a natural number $n$ and a cardinal number $kappa$; which is called $n$-factorization property of level $kappa$. Then we study the relation between $n$-factorization property of  level $kappa$ for $X^*$ with respect to $f$ and automatically boundedness and $w^*$-$w^*$-continuity...

متن کامل

Iterative Weighted Non-smooth Non-negative Matrix Factorization for Face Recognition

Non-negative Matrix Factorization (NMF) is a part-based image representation method. It comes from the intuitive idea that entire face image can be constructed by combining several parts. In this paper, we propose a framework for face recognition by finding localized, part-based representations, denoted “Iterative weighted non-smooth non-negative matrix factorization” (IWNS-NMF). A new cost fun...

متن کامل

Bernstein's theory of movement behavior: historical development and contemporary relevance.

In present-day movement science, N. A. Bernstein's formulation of the problems of motor control is often taken as the starting point. The reliance on Bernstein has not brought agreement among his followers, however. In this article, the authors pose the following question: Does the disagreement arise from the structure of his work itself or from incomplete exploitation of his thinking? By using...

متن کامل

On the WZ Factorization of the Real and Integer Matrices

The textit{QIF}  (Quadrant Interlocking Factorization) method of Evans and Hatzopoulos solves linear equation systems using textit{WZ}  factorization. The  WZ factorization can be faster than the textit{LU} factorization  because,  it performs the simultaneous evaluation of two columns or two rows. Here, we present a  method for computing the real and integer textit{WZ} and  textit{ZW} factoriz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002