Domain Decomposition Preconditioners for Linear–quadratic Elliptic Optimal Control Problems
نویسندگان
چکیده
We develop and analyze a class of overlapping domain decomposition (DD) preconditioners for linear-quadratic elliptic optimal control problems. Our preconditioners utilize the structure of the optimal control problems. Their execution requires the parallel solution of subdomain linear-quadratic elliptic optimal control problems, which are essentially smaller subdomain copies of the original problem. This work extends to optimal control problems the application and analysis of overlapping DD preconditioners, which have been used successfully for the solution of single PDEs. We prove that for a class of problems the performance of the two-level versions of our preconditioners is independent of the mesh size and of the subdomain size.
منابع مشابه
Neumann-Neumann Domain Decomposition Preconditioners for Linear-Quadratic Elliptic Optimal Control Problems
We present a class of domain decomposition (DD) preconditioners for the solution of elliptic linear-quadratic optimal control problems. Our DD preconditioners are extensions of Neumann–Neumann DD preconditioners, which have been successfully applied to the solution of single PDEs. The DD preconditioners are based on a decomposition of the optimality conditions for the elliptic linear-quadratic ...
متن کاملDistributed Solution of Optimal Control Problems Governed by Parabolic Equations
We present a spatial domain decomposition (DD) method for the solution of discretized parabolic linear–quadratic optimal control problems. Our DD preconditioners are extensions of Neumann-Neumann DD methods, which have been successfully applied to the solution of single elliptic partial differential equations and of linear–quadratic optimal control problems governed by elliptic equations. We us...
متن کاملBalancing Neumann-Neumann Methods for Elliptic Optimal Control Problems
We present Neumann-Neumann domain decomposition preconditioners for the solution of elliptic linear quadratic optimal control problems. The preconditioner is applied to the optimality system. A Schur complement formulation is derived that reformulates the original optimality system as a system in the state and adjoint variables restricted to the subdomain boundaries. The application of the Schu...
متن کاملDomain Decomposition Methods for Linear-Quadratic Elliptic Optimal Control Problems
Domain Decomposition Methods for Linear-Quadratic Elliptic Optimal Control Problems
متن کاملDomain Decomposition Methods for Advection Dominated Linear–Quadratic Elliptic Optimal Control Problems
We present an optimization-level domain decomposition (DD) preconditioner for the solution of advection dominated elliptic linear–quadratic optimal control problems, which arise in many science and engineering applications. The DD preconditioner is based on a decomposition of the optimality conditions for the elliptic linear–quadratic optimal control problem into smaller subdomain optimality co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004