Shishiodoshi unidirectional energy transfer mechanism in phenylene ethynylene dendrimers.

نویسندگان

  • S Fernandez-Alberti
  • Adrian E Roitberg
  • Valeria D Kleiman
  • T Nelson
  • S Tretiak
چکیده

Non-adiabatic excited-state molecular dynamics is used to study the ultrafast intramolecular energy transfer between two-, three-, and four-ring linear polyphenylene ethynylene chromophore units linked through meta-substitutions. Twenty excited-state electronic energies, with their corresponding gradients and nonadiabatic coupling vectors were included in the simulations. The initial laser excitation creates an exciton delocalized between the different absorbing two-ring linear PPE units. Thereafter, we observe an ultrafast directional change in the spatial localization of the transient electronic transition density. The analysis of the intramolecular flux of the transition density shows a sequential through-bond two-ring→three-ring→four-ring transfer as well as an effective through-space direct two-to-four ring transfer. The vibrational excitations of C≡C stretching motions change according to that. Finally, a mechanism of unidirectional energy transfer is presented based on the variation of the energy gaps between consecutive electronic excited states in response to the intramolecular flux of the transition density. The mechanism resembles a Shishiodoshi Japanese bamboo water fountain where, once the electronic population has been transferred to the state directly below in energy, the two states decouple thereby preventing energy transfer in the opposite direction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-adiabatic excited state molecular dynamics of phenylene ethynylene dendrimer using a multiconfigurational Ehrenfest approach.

Photoinduced dynamics of electronic and vibrational unidirectional energy transfer between meta-linked building blocks in a phenylene ethynylene dendrimer is simulated using a multiconfigurational Ehrenfest in time-dependent diabatic basis (MCE-TDDB) method, a new variant of the MCE approach developed by us for dynamics involving multiple electronic states with numerous abrupt crossings. Excite...

متن کامل

Biotinylated poly(p-phenylene ethynylene): unexpected energy transfer results in the detection of biological analytes.

Decreased spectral overlap between a donor biotinylated poly(p-phenylene ethynylene) and a chromophore-labeled streptavidin acceptor leads to better observed fluorescence resonance energy transfer.

متن کامل

Nonadiabatic excited-state molecular dynamics: modeling photophysics in organic conjugated materials.

To design functional photoactive materials for a variety of technological applications, researchers need to understand their electronic properties in detail and have ways to control their photoinduced pathways. When excited by photons of light, organic conjugated materials (OCMs) show dynamics that are often characterized by large nonadiabatic (NA) couplings between multiple excited states thro...

متن کامل

Unidirectional Energy Transfer in Conjugated Molecules: The Crucial Role of High-Frequency CtC Bonds

Excited-state nonadiabatic molecular dynamics is used to study energy transfer in dendrimer building blocks, between two-, three-, and four-ring linear polyphenylene ethynylene units linked by meta-substitutions. Upon excitation, dendrimers with these building blocks have been shown to undergo highly efficient and unidirectional energy transfer. The simulations start by initial vertical excitat...

متن کامل

En route to a motorized nanocar.

[structure: see text] With the eventual goal of demonstrating a motorized nanocar, the key structure has been synthesized which bears a light-activated unidirectional molecular motor and an oligo(phenylene ethynylene) chassis and axle system with four carboranes to serve as the wheels. Kinetics studies in solution show that the motor indeed rotates upon irradiation with 365 nm light, and the fu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 137 22  شماره 

صفحات  -

تاریخ انتشار 2012